中考二次函数专题复习试题

中考二次函数专题复习试题

ID:31931281

大小:970.50 KB

页数:14页

时间:2019-01-28

中考二次函数专题复习试题_第1页
中考二次函数专题复习试题_第2页
中考二次函数专题复习试题_第3页
中考二次函数专题复习试题_第4页
中考二次函数专题复习试题_第5页
资源描述:

《中考二次函数专题复习试题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、可编辑版中考二次函数专题复习教师寄语:二次函数这一章在初中数学中占有重要地位,同时也是高中数学学习的基础.作为初高中衔接的内容,二次函数在中考命题中一直是“重头戏”,根据对近几年中考试卷的分析,预计今年中考中对二次函数的考查题型有低档的填空题、选择题,中高档的解答题,分值一般为9~15分,除考查定义、识图、性质、求解析式等常规题外,还会出现与二次函数有关的贴近生活实际的应用题,阅读理解题和探究题,二次函数与其他函数方程、不等式、几何知识的综合在压轴题中出现的可能性很大.学习要求:中考中主要考查二次函数的基础知识、二次函数解析式

2、求法、二次函数的实际应用.考查的题型常以填空题、选择题和解答题的形式出现.在复习二次函数的基础知识时,要注重待定系数法、函数思想、数形结合等等思想方法的应用。教师应对策略:从学生对基础知识基本技能的掌握入手,从图像入手,紧紧抓住二次函数的性质设计基础题,中等题与中考综合题,分三层次进行有效训练会比较好。通过具体题目的师生共同分析,引导学生梳理整章知识点,在题目分析中注重让学生自己开动脑筋去发现问题,进而找出解决问题的方法,教会学生如何去应对较复杂的二次函数的综合题。知识点归纳:一、二次函数概念:1.二次函数的概念:一般地,形如

3、(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2.二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1.二次函数基本形式:的性质:a的绝对值越大,抛物线的开口越小。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2.的性质:上加下减。的符号开口方向顶点坐

4、标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.3.的性质:左加右减。Word完美格式可编辑版的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.4.的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.三、二次函数图象的平移

5、1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式Word完美格式可编辑版,确定其开口方向、对

6、称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1.当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1.一般式:(,,为

7、常数,);2.顶点式:(,,为常数,);3.两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和

8、方向,的正负决定开口方向,的大小决定开口的大小.2.一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。