[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc

ID:31852961

大小:106.50 KB

页数:11页

时间:2019-01-21

[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc_第1页
[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc_第2页
[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc_第3页
[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc_第4页
[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc_第5页
资源描述:

《[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念。极限的思想方法为建立微积分学提供了严格的理论基础,极限的思想方法为数学的发展提供了有力的思想武器。当今数学教学界,非常重视数学思想方法在教学中的渗透。然而实际教学中,部分教师对极限思想方法的理解及应用还存在着偏颇,本文将在小学数学教学中极限思想的渗透上提出自己的观点。 [关键词]数学思想  极限思想  极限思想的渗透点 极限是用以描述变量在一定的变化过程中的终极状态的概念[1]。极限的思想方法为建立微积分学提供了严格的理论基础,极限的思想方法为数学的发展提供了有力的思想武器。当今数学教学界,非常重视

2、数学思想方法在教学中的渗透。然而在小学数学的实际教学中,部分教师对极限思想方法的理解及应用还存在着一定的忽视,本文对如将极限的思想方法应用于小学数学教学之中,提出自己的观点和同行们探讨与交流。 这是大家都非常熟知的一个故事:有一个牧民,临终前要把17匹马分给他的3个儿子。于是留下遗嘱:分给老大,分给老二,分给老三。牧民死后,三个儿子都不知道如何来分。一位邻居牵来自己的一匹马来帮忙分,这时就有18匹马了,所以老大得9匹,老二得6匹,老三得2匹,邻居牵着自己的那匹走了。 有人对上述分马的方法提出了异议,认为这实际上分的是18匹马,而不是17匹。那么我们不妨换一种办

3、法来分: 共17匹马。老大可以分得:17×=匹;老二可以分得:17×=匹;老三分得17×=匹。还剩下17---=匹。 我们就把剩下匹马按遗嘱继续分。老大又可以分得:匹;老二又可以分得:匹;老三又分得匹。还剩下匹。就这样我们可以继续不断地分下去…… 现在让我们来看一看老大分得的马匹数: 第一次得,第二次得,第三次得,……,第n次得……这是一个无穷递缩等比数列,这个数列所有项的和是S=+++…++…==9,即老大分得9匹。 利用这种办法我们也可以求出:老二可以分得6匹,老三可以分得2匹。而9+6+2=17,恰好分完。这样既满足了牧民的心愿,又符合规则,问题得到圆满

4、解决。 “借马分马”的故事虽然简单,但第二种分马的方法其中所蕴含的极限思想却极其珍贵。如果你只认识到“只分一次”是不够的,这种办法的核心是要将分遗产的过程无限的进行下去,每分一次剩下的马匹数都缩小到上一次的,最后每个人分得的马匹数就逼近于一个整数了,这实际就是极限的思想的一个具体应用。 由于小学生的年龄特点的限制,他们对具体的、数量有限的事物容易理解,对抽象的、数量无限的事物难于把握。但作为教师我们不能无视极限思想方法的重要性,还应该着眼于学生的长远发展及终身发展,因此,我们在小学数学教学中应针对小学生的特点,将极限有思想方法进行适度的渗透。我想教师应该抓住机

5、会采用分层渗透的办法,切不可急功近利。 层次一:帮助学生理解无限。 1.数量无限多。 现行小学教材中有许多知识点会涉及到数量无限多的情况。在“自然数”、“奇数”、“偶数”、这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个。在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的。通过这些方面让学生初步体会“无限”思想,这样的例子在小学数学教学中还有很多。比如 商不变性质教学后的练习:(32÷□)÷(8÷□)=4让学生体会□内可填入无限多数,再如:在学习分数基本性质后的练习中,教师又要求学生在1分钟内

6、写一些与某个分数相等的分数,让学生体会这样的分数也是无穷无尽的。 2.图形无限延伸。 小学几何概念中有许多概念是具有无限性的,如直线、射线、角的边、平行线的长度等等它们都是可以无限延伸的。这些概念在现实生活中并不是真实存在的(现实生活中你找不要一条能无限延伸的线),它们只是存在于人脑的想象之中,是人脑抽象的结果。而这种想象又是进一步学习数学的必不可少的基础能力。因此,在图形教学中培养学生空间想象力,培养学生的无限观念是非常重要的。 以上两点是从不同方面体现了“无限”的观念,并不是真正意义上的“极限”,然而,培养学生的无限观念是形成极限思想的基础,离开无限谈极限

7、是没有任何意义的。所以,不应该因为“无限≠极限”而忽视对无限性的教学。 层次二:帮助学生理解逼近。 “无限≠极限”的原因在于无限的结果可能是收敛的,也可能是发散的。由于小学生的生活经验、数学知识还比较贫乏,他们只能通过一些具体的事例,逐渐感悟到什么是“无限地逼近”,为将来学习“收敛”这个数学中概念积累一些感性的认识。因此,逐步理解“逼近”是形成极限思想的另一个重要方面。 受年龄特征的制约小学生对极限思想不会有深刻的理解,但这并不等于我们在小学数学教学中可以淡化对极限思想的渗透,相反我们应该抓住一切可以利用的契机加以渗透,为他们将来学习极限理论,提高抽象思维,奠

8、定基础。笔者认为小学数学教学中可以在以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、[摘要]极限是用以描述变量在一定的变化过程中的终极状态的概念。极限的思想方法为建立微积分学提供了严格的理论基础,极限的思想方法为数学的发展提供了有力的思想武器。当今数学教学界,非常重视数学思想方法在教学中的渗透。然而实际教学中,部分教师对极限思想方法的理解及应用还存在着偏颇,本文将在小学数学教学中极限思想的渗透上提出自己的观点。 [关键词]数学思想  极限思想  极限思想的渗透点 极限是用以描述变量在一定的变化过程中的终极状态的概念[1]。极限的思想方法为建立微积分学提供了严格的理论基础,极限的思想方法为数学的发展提供了有力的思想武器。当今数学教学界,非常重视

2、数学思想方法在教学中的渗透。然而在小学数学的实际教学中,部分教师对极限思想方法的理解及应用还存在着一定的忽视,本文对如将极限的思想方法应用于小学数学教学之中,提出自己的观点和同行们探讨与交流。 这是大家都非常熟知的一个故事:有一个牧民,临终前要把17匹马分给他的3个儿子。于是留下遗嘱:分给老大,分给老二,分给老三。牧民死后,三个儿子都不知道如何来分。一位邻居牵来自己的一匹马来帮忙分,这时就有18匹马了,所以老大得9匹,老二得6匹,老三得2匹,邻居牵着自己的那匹走了。 有人对上述分马的方法提出了异议,认为这实际上分的是18匹马,而不是17匹。那么我们不妨换一种办

3、法来分: 共17匹马。老大可以分得:17×=匹;老二可以分得:17×=匹;老三分得17×=匹。还剩下17---=匹。 我们就把剩下匹马按遗嘱继续分。老大又可以分得:匹;老二又可以分得:匹;老三又分得匹。还剩下匹。就这样我们可以继续不断地分下去…… 现在让我们来看一看老大分得的马匹数: 第一次得,第二次得,第三次得,……,第n次得……这是一个无穷递缩等比数列,这个数列所有项的和是S=+++…++…==9,即老大分得9匹。 利用这种办法我们也可以求出:老二可以分得6匹,老三可以分得2匹。而9+6+2=17,恰好分完。这样既满足了牧民的心愿,又符合规则,问题得到圆满

4、解决。 “借马分马”的故事虽然简单,但第二种分马的方法其中所蕴含的极限思想却极其珍贵。如果你只认识到“只分一次”是不够的,这种办法的核心是要将分遗产的过程无限的进行下去,每分一次剩下的马匹数都缩小到上一次的,最后每个人分得的马匹数就逼近于一个整数了,这实际就是极限的思想的一个具体应用。 由于小学生的年龄特点的限制,他们对具体的、数量有限的事物容易理解,对抽象的、数量无限的事物难于把握。但作为教师我们不能无视极限思想方法的重要性,还应该着眼于学生的长远发展及终身发展,因此,我们在小学数学教学中应针对小学生的特点,将极限有思想方法进行适度的渗透。我想教师应该抓住机

5、会采用分层渗透的办法,切不可急功近利。 层次一:帮助学生理解无限。 1.数量无限多。 现行小学教材中有许多知识点会涉及到数量无限多的情况。在“自然数”、“奇数”、“偶数”、这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个。在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的。通过这些方面让学生初步体会“无限”思想,这样的例子在小学数学教学中还有很多。比如 商不变性质教学后的练习:(32÷□)÷(8÷□)=4让学生体会□内可填入无限多数,再如:在学习分数基本性质后的练习中,教师又要求学生在1分钟内

6、写一些与某个分数相等的分数,让学生体会这样的分数也是无穷无尽的。 2.图形无限延伸。 小学几何概念中有许多概念是具有无限性的,如直线、射线、角的边、平行线的长度等等它们都是可以无限延伸的。这些概念在现实生活中并不是真实存在的(现实生活中你找不要一条能无限延伸的线),它们只是存在于人脑的想象之中,是人脑抽象的结果。而这种想象又是进一步学习数学的必不可少的基础能力。因此,在图形教学中培养学生空间想象力,培养学生的无限观念是非常重要的。 以上两点是从不同方面体现了“无限”的观念,并不是真正意义上的“极限”,然而,培养学生的无限观念是形成极限思想的基础,离开无限谈极限

7、是没有任何意义的。所以,不应该因为“无限≠极限”而忽视对无限性的教学。 层次二:帮助学生理解逼近。 “无限≠极限”的原因在于无限的结果可能是收敛的,也可能是发散的。由于小学生的生活经验、数学知识还比较贫乏,他们只能通过一些具体的事例,逐渐感悟到什么是“无限地逼近”,为将来学习“收敛”这个数学中概念积累一些感性的认识。因此,逐步理解“逼近”是形成极限思想的另一个重要方面。 受年龄特征的制约小学生对极限思想不会有深刻的理解,但这并不等于我们在小学数学教学中可以淡化对极限思想的渗透,相反我们应该抓住一切可以利用的契机加以渗透,为他们将来学习极限理论,提高抽象思维,奠

8、定基础。笔者认为小学数学教学中可以在以

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭