苏科版八上 2.5实数 案例2.doc

苏科版八上 2.5实数 案例2.doc

ID:31842483

大小:87.00 KB

页数:6页

时间:2019-01-21

苏科版八上 2.5实数 案例2.doc_第1页
苏科版八上 2.5实数 案例2.doc_第2页
苏科版八上 2.5实数 案例2.doc_第3页
苏科版八上 2.5实数 案例2.doc_第4页
苏科版八上 2.5实数 案例2.doc_第5页
资源描述:

《苏科版八上 2.5实数 案例2.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、课题:2.5实数(第一课时)[义务教育课程标准实验教科书数学(苏科版)八年级上册第二章第五节]海州实验中学王玉珍一、教学目的:1、知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数。2、知道实数和数轴上的点一一对应。3、经历用有理数估算的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神。二、教学重点与难点:重点:会判断一个数是有理数还是无理数。难点:不是有理数,有多大?三、设计思路:本节课通过问题情境,使学生在研究、交流的过程中经历数系的扩充,感受数学的逼近思想,发展数感等。在引导学生经历感受不

2、是有理数的过程中,通过交流、讨论和探索,让学生感受客观世界中“无理数的客观存在性”,从而感受引入新数的必要性。四、教学过程。(一)创设情境情境一:提出问题—我们通过研究边长为1的正方形的对角线的长为,说说你对的认识。[设计说明:由学生熟知的实例提出问题,从而激发学生的学习兴趣和求知欲。]情境二:现有一个直角三角形,直角边均为1,斜边为多少?你认识这个数吗?[设计说明:在学生运用学过的知识解决一个问题的同时,引出了新的问题,激发学生的探索创新精神。]情境三:大家都知道2是一个有理数,它的算术平方根为多少?还是一个有理数吗?[设计说明:通过提出问题和解决问题,让学生感受的客观

3、存在性,同时又产生一个疑问,从而会主动探索研究这个新问题,直至完全没有疑问。]情境四:为了生活的需要人们引入了负数,数就由原来的正数和0扩充为有理数。细心的同学会发现还有一些不是有理数的数,和有理数一起构成了实数,它们到底是什么数呢?引出课题:实数。[设计说明:让学生明白引入负数和引入无理数一样,都是生活的需要,同时说明了它们的客观性,同时告诉学生作好准备,迎接新的“挑战”。](二)探索活动问题1:是有理数吗?[设计说明:有理数范围很大,不少学生想到:整数和分数统称有理数,自然会将此问题变成两个小问题:a、是整数吗?b、是分数吗?若两者都不是,就说明不是有理数。]问题2:

4、是一个整数吗?[设计说明:从说说对的认识中部分学生就认识到不是整数,如:用刻度尺测量,可知约等于1.4;在等腰直角三角形中,斜边大于直角边,可知大于1,三角形中两边之和大于第三边,可知<2,所以1<<2,而在1与2之间没有整数。问题3:是1与2之间的一个分数吗?(也就是1与2之间的分数的平方会等于吗?)[从直观上认识,从中可以让学生感知不是分数,因不是整数,即不是有理数,是一个新数。][设计说明:引导学生经历“有理数—实数”的又一次扩充,使学生从中不断积累数学活动的经验,教学中学生面对这个问题时,可能表现出比较盲目,不知如何着手,教师可以引导学生思考、交流,并给予适当的指

5、导。]问题4:有多大?[设计说明:问题2是定性的研究,知道<<,即1.4<<1.5,问题3上升到定量的研究——更精确的描述。学生借助研究问题2的思路容易整理出研究问题3的思路。教学中可能学生夹逼的方法各有不同,要鼓励学生进行充分的探索,在探索中体会“无限”的过程。](三)课堂反馈例题1、把下列各数填入相应的集合内:、、0、、、、3.14159、-0.0200200020.12121121112…(1)有理数集合{}(2)无理数集合{}(3)正实数集合{}(4)负实数集合{}分析:要正确地将以上各数分类,就必须对各类书的概念十分清晰,用概念来判定。练习一:课本P72练习第1

6、题练习二:判断正误,若不对,请说明理由,并加以改正。(1)无理数都是无限小数。(2)带根号的数不一定是无理数。(3)无限小数都是无理数。(4)数轴上的点表示有理数。(5)不带根号的数一定是有理数。练习三:课本P72练习第3题[设计说明:在例题后安排了一组练习,练习一主要是对有关概念的强化,练习二主要是通过学生对概念的进一步理解,比较和判断,提高他们的是非辨别力,它是在课本练习第2题的基础上增加了几个问题,其目的是通过一组判断题,帮助学生澄清概念,杜绝两者混淆。练习三可留作课后思考,时间允许的话最好课内解决,先让学生独立思考,然后小组讨论,教师也要参与,这种合作学习不仅可以

7、激活学生的思维,培养合作精神,而且有助于因材施教,可以弥补教师难以面对有差异的众多学生的不足,有助于每个学生的全面及自主发展。](四)课堂小结⒈怎样的数是无理数?请举例说明⒉说说你对数的认识。(可以小论文的形式出现)(五)布置作业课本P75习题2.51五、教后反思:课题:2.5实数(第二课时)[义务教育课程标准实验教科书数学(苏科版)八年级上册第二章第五节]海州实验中学王玉珍一、教学目的:1、了解有理数的运算在实数范围内仍然适用。2、能用有理数估计一个无理数的大致范围。3、能利用计算器比较实数的大小,进行实数的四则运算。4、通

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。