欢迎来到天天文库
浏览记录
ID:31838675
大小:86.00 KB
页数:3页
时间:2019-01-20
《浙教版七上 5.3一元一次方程的应用(1)教案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、一元一次方程的应用(1)一、教学目标二、教学重点和难点三、教学过程我国体育健儿在举世瞩目的第28届奥运会上不畏强手,奋力拼搏,实现了我国竞技体育在奥运会上新的历史性突破,获得了32枚金牌,比1988年奥运会我国获得的金牌数的6倍多2枚,1988年奥运会我国获得几枚金牌?用算术方法:=5(枚).用列方程的方法:设1988年获得x枚金牌,根据题意,得6x+2=32.解这个方程,得x=5(枚).对于这样的应用题,用直接列算式方法解,或用列方程方法解都比较方便.算术方法是根据已知量的数量关系,用逆向思维的方法,列出综合算式直接
2、求未知量.列方程的方法是通过用字母表示未知量,并把这个未知量当作已知量,找出与题中的其他已知量形成的相等关系列出方程求解.合作学习2004年与1988年奥运会我国共获91枚奖牌,其中2004年比1998年的2倍多7枚,问1998年我国获得几枚奖牌?请讨论和解答下面的问题:(1)能直接列出算式求1998年奥运会我国获得的奖牌数吗?(2)如果用列方程的方法求解,设哪个未知数为x?(3)根据怎样的相等来列方程?方程的解是多少?用算术方法:=28.说明:若学生不能说出“2+1”,教师引导从“91-7”这个数据上分析金牌数是属于
3、哪几届的.用列方程的方法:设1988年获得x枚金牌,根据题意,得x+2x+7=91.解这个方程,得x=28(枚).当数量关系比较复杂时,列方程解应用题要比直接列算式解容易.适当地运用一元一次方程的知识,可以解决许多现实生活中遇到的有关实际问题[板书5.3一元一次方程的应用].例15位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?分析题中哪些量是已知的?哪些量是未知的?这些量之间有什么关系?能用表格去表示吗?设哪个未知数为?题中的相等关系是什么?人数
4、票价总票价教师57学生相等关系解设学生有人,根据题意,得.解这个方程,得.检验:适合方程,且符合题意.答:学生有49人.从上面的例子我们可以看到,运用方程解决实际问题的一般过程是:1.审题:分析题意,找出题中的数量关系及其关系;2.设元:选择一个适当的未知数用字母表示(例如x);3.列方程:根据相等关系列出方程;4.解方程:求出未知数的值;5.检验:检验求得的值是否正确和符合实际情形,并写出答案.练习甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千
5、米/时,乙的速度为45千米/时.经过多少时间两人相遇?分析什么叫相向而行、同向而行?路程、时间与速度之间有怎样的数量关系?.A,B两地间路程是哪几段路程之和?摩托车所走路程自行车所走路程180千米自行车所走的路程+摩托车所走的路程=180千米.方程能列出来吗?变题一相遇后经过多少时间乙到达A地?变题二如果甲先行1时后乙才出发,问甲再行多少时间与乙相遇?自行车走1时摩托车走x时自行车走x时180千米例2甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3时两人相遇.已知在相遇时乙比
6、甲多行了90千米,相遇后经1时乙到达A地.问甲、乙行驶的速度分别是多少?变题相遇后经过多少时间甲到达B地?设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲333+90乙33+9013相遇前甲行驶的路程+90=相遇前乙行驶的路程;相遇后乙行驶的路程=相遇前甲行驶的路程.解设甲行驶的速度为千米/时,则相遇前甲行驶的路程为3千米,乙行驶的路程为(3+90)千米,乙行驶的速度为千米/时,由题意,得.解这个方程,得=15.检验:=15适合方程,且符合题意.将=15代入,得
7、==45.答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.想一想如果设乙行驶的速度为千米/时,你能列出有关的方程并解答吗?在分析应用题中的数量关系时,常用列表分析法与线段图示法,使题目中的条件和结论变得直观明显,因而容易找到它们之间的相等关系.
此文档下载收益归作者所有