2015年中考数学专题复习7综合探究问题

2015年中考数学专题复习7综合探究问题

ID:31746216

大小:487.81 KB

页数:19页

时间:2019-01-17

2015年中考数学专题复习7综合探究问题_第1页
2015年中考数学专题复习7综合探究问题_第2页
2015年中考数学专题复习7综合探究问题_第3页
2015年中考数学专题复习7综合探究问题_第4页
2015年中考数学专题复习7综合探究问题_第5页
资源描述:

《2015年中考数学专题复习7综合探究问题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、综合探究问题探索是一种重要的研究问题的方法,也是人们发现新知识的重要手段,非常有利于培养创新能力•探索问题包括从实践中探索、从特殊到一般的探索、存在性探索、动态探索等等.一般在各地中考都以压轴题形式111现.题型之一实践操作型综合探究问题例1(2013•日照)问题背景:如图a,点A,B在直线I的同侧,要在直线I上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于直线I的对称点B',连接AB'与直线I交于点C,则点C即为所求.图C⑴实践运用:如图b,已知O0的直径CD为4,点A在00±,ZACD=30°,B为弧AD的中点,P为直径CD±一动点,则BP+AP的最小值为.⑵知识拓展:如图

2、c,在RtAABC中,AB=10,ZBAC=45°,ZBAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点・,求BE+EF的最小值,并写出解答过程.【思路点拨】首先要深刻理解图a屮的方法、过程、结论;由此在图b,c屮分别找到点B关于CD,AD的对称点B’,在图b中,AB'与CD的交点就是点P的位置,所不同的是要灵活运用圆周角与圆心角关系及圆的对称性來找到相关角的度数,这样易得到其最小值;在图c屮,由于点F是动态的,因此要根据“垂线段最短”这一公理来解决问题.【解答】(1)2、伍.⑵如图C,在斜边AC上截取AB'二AB,连接BB‘・TAD平分ZBAC,.••点B与点B’关于直线AD

3、对称.过点B’作B‘F丄AB,垂足为F,交AD于E,则线段B‘F的长即为所求.在RtZAFB'中,VZBAC=45°,AB‘=AB=10,B‘F二AB'•sin45°=AB•sin45°=10X^=572.2即BE+EF的最小值为5^2.方法归纳:本例是将某一问题的解决方法,运用到解决不同情景下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情景中对应知识来解决问题.针对训练1.(2013・盐城)实践操作如图,AABC是直角三角形,ZACB=90°,利用直尺和圆规按下列要求作图,并在图屮标明相应的字母.(保留作图痕迹,不写作法)⑴作ZBAC

4、的平分线,交BC于点O;(2)以O为圆心,OC为半径作圆.综合运用(在你所作的图屮,⑴AB与O0的位置关系是:值接写出答案)⑵若AC=5,BC=12,求O0的半径.2.(2014•江西)如图1,边长为4的正方形ABCD屮,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…BFADBFC图2备川图⑴图2中的AEFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.

5、①请判断四边形EFGH的形状为,此时此刻AE与BF的数量关系是;②以①屮的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.3.(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.⑴求证:AE丄BF;⑵将ABCF沿BF对折,得到ABPF(如图2),延长FP交BA的延长线于点Q,求sinZBQP的值;⑶将AABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.题型之二从特殊到一般的探究性问题例2(20

6、14•内江)如图,在AABC中,D是BC边上的点(不与点B、C重合),连接AD.问题引入:如图1,当点D是BC边上的中点时»Saabd:Szsabc=;当点D是BC边上任意一点时,Saabd:Saabc=(用图屮已有线段表示).探索研究:⑵如图2,在AABC中,0是线段AD上一点(不与点A、D重合),连接BO、CO,试猜想S^oc与Saabc之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图3,0是线段AD上一点(不与点A、D重合),连接B0并延长交AC于点F,连接CO并延长交AB于点E.试猜ODOEOFAD+CE+BF的值,并说明理由.图IA图2【思路点拨】(1)两个三角形

7、的高相等时,面积比等于底边的比;(2)当两个三角形底边相等时,面积之比等于高之比;⑶利用⑵中的结论即可解决.【解答】(1)1:2;BD:BC.⑵猜想Smoc与Saabc之比应该等于OD:AD.理由:如图,分别过0、A作BC的垂线OE、AF,垂足为E、F.则OE〃AF.・'.OD:AD=OE:AF.1111・・・Saboc=-・BC・OE,Saabc丄一・BC•AF,・Saboc:Saabc=(-*BC•OE):(-・B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。