欢迎来到天天文库
浏览记录
ID:31727791
大小:269.00 KB
页数:4页
时间:2019-01-17
《2.1《直线与直线的方程(8)》教案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第八课时两条直线的位置关系―点到直线的距离公式一、三维目标:1、知识与技能:理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;2、能力和方法:会用点到直线距离公式求解两平行线距离3、情感和价值:认识事物之间在一定条件下的转化。用联系的观点看问题w二、教学重点:点到直线的距离公式教学难点:点到直线距离公式的理解与应用.三、教学方法:学导式教具:多媒体、实物投影仪四、教学过程 (一)、情境设置,导入新课前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样
2、由点的坐标和直线的方程直接求点P到直线的距离。用POWERPOINT打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。要求学生思考一直线上的计算?能否用两点间距离公式进行推导?两条直线方程如下:(二)、研探新课1.点到直线距离公式:点到直线的距离为:(1)提出问题在平面直角坐标系中,如果已知某点P的坐标为,直线=0或B=0时,以上公式,怎样用点的坐标和直线的方程直接求点P到直线的距离呢?学生可自由讨论。(2)数行结合,分析问题,提出解决方案学生已有了点到直线的距离的概念,即由点P到直线的距离d是点P到直线的垂线段的
3、长.这里体现了“画归”思想方法,把一个新问题转化为一个曾今解决过的问题,一个自己熟悉的问题。画出图形,分析任务,理清思路,解决问题。方案一:设点P到直线的垂线段为PQ,垂足为Q,由PQ⊥可知,直线PQ的斜率为(A≠0),根据点斜式写出直线PQ的方程,并由与PQ的方程求出点Q的坐标;由此根据两点距离公式求出|PQ|,得到点P到直线的距离为d此方法虽思路自然,但运算较繁.下面我们探讨别一种方法方案二:设A≠0,B≠0,这时与轴、轴都相交,过点P作轴的平行线,交于点;作轴的平行线,交于点,由得.所以,|PR|=||=,|PS|=||=|RS|=×||由三角形面积公式可知:·|RS|=|PR|·|
4、PS|,所以。可证明,当A=0时仍适用这个过程比较繁琐,但同时也使学生在知识,能力。意志品质等方面得到了提高。2、例题应用,解决问题。例1求点P=(-1,2)到直线3x=2的距离。解:d=例2已知点A(1,3),B(3,1),C(-1,0),求三角形ABC的面积。解:设AB边上的高为h,则S=,AB边上的高h就是点C到AB的距离。AB边所在直线方程为,即x+y-4=0。点C到X+Y-4=0的距离为hh=,因此,S=通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性。3、同步练习:114页第1,2题。(三)、拓展延伸,评价反思1、应用推导
5、两平行线间的距离公式已知两条平行线直线和的一般式方程为:,:,则与的距离为证明:设是直线上任一点,则点P0到直线的距离为又即,∴d=例3求两平行线:,:的距离.解法一:在直线上取一点P(4,0),因为∥,所以点P到的距离等于与的距离.于是解法二:∥又.由两平行线间的距离公式得(四)、课堂练习已知一直线被两平行线3x+4y-7=0与3x+4y+8=0所截线段长为3。且该直线过点(2,3),求该直线方程。(五)、小结:点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式(六)、课后作业:1、求点P(2,-1)到直线2+3-3=0的距离.2、已知点A(,6
6、)到直线3-4=2的距离d=4,求的值:3、已知两条平行线直线和的一般式方程为:,:,则与的距离为五、教后反思:
此文档下载收益归作者所有