关于初中数学证明题教学几点思索

关于初中数学证明题教学几点思索

ID:31675667

大小:62.70 KB

页数:7页

时间:2019-01-17

关于初中数学证明题教学几点思索_第1页
关于初中数学证明题教学几点思索_第2页
关于初中数学证明题教学几点思索_第3页
关于初中数学证明题教学几点思索_第4页
关于初中数学证明题教学几点思索_第5页
资源描述:

《关于初中数学证明题教学几点思索》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、关于初中数学证明题教学几点思索摘要:在全面提倡素质教育的今天,数学证明在培养学生的逻辑思维能力和提高学生的数学技能两方面起着非常重要的作用。但是,初中生在数学证明学习中,会出现明显的两极分化。这种差异绝不仅仅是由学生单方面造成的,数学证明的教学工作也有着很大的关系。研究初中数学证明教学工作的相关问题,对提升教学质量有着重要意义。关键词:数学证明题;教学思路;解题步骤一、初中数学证明题教学的重要性数学证明是以一些基本概念和公理为基础,使用合乎逻辑的推理去决定判断是否正确。数学证明的教育价值应该体现在三方面:一是知识方面,数学证明能加深学生对基础概念和定理的理解;二是思维方

2、面,数学证明能训练学生逻辑思维能力;三是文化方面,数学证明能够让学生体会数学的理性精神,学会理性思考问题。最新的北师大版初中数学教材中,《证明》占了三章,这样的安排是想让学生通过对主要图形的性质及相互关系进行大量的探索,同时,使学生在推理的过程,进行逻辑推理的训练,从而具备一定的推理能力,为今后的推理证明打下坚实基础。二、初中数学证明题的教学步骤初中数学证明不仅是学习重点,更是学习难点,很多同学对证明题的解答无从着手,还有一部分学生虽然了解解题思路,但证明过程的叙述表达混乱,因此,教学中如何教导学生掌握正确的解题思路和解题技巧就显得非常重要。下面谈谈笔者的教学步骤:(1

3、)读题笔者认为,应将读题分为三个层次:第一层是粗读,快速浏览题目,了解题目要求;第二层是细读,在了解题目要求后,进行有针对性地读题,目的是弄清题设和结论,明白已知什么、需要证明什么。[1]如果题中给出的条件不是一目了然即有隐含条件的一一这类题是证明题中的难点,教师一定要指导学生如何去挖掘它们;第三层是记忆复述。在粗读和细读的基础上,要做到能够用自己的话语把原题的意思复述出来。能够做到第三层,才算读题完成。对于读题这环,必须严格按照前面三环执行,因为在实际证题的时候,学生之所以找不到证明的思路或方法,就是学生漏掉题中某些已知条件或将题中某些已知条件记错,如果能够将已知条件

4、记在心里并能复述出来就可以避免这种情况的发生。(2)分析教师要通过启发性的语言或提问指导学生对题目进行分析,学生在教师指导下,经过一系列的判断、比较、选择,以及相应的分析、综合、概括等,发现解决问题的思路和方法,最后通过总结,掌握证明的思路和方法(1)演示教师在解题过程中,一定要给学生作证题的书写演示,并且必须严格要求自己,使学生今后能够模仿这种合理、规范、科学地书写证明过程。(2)变式练习在获得某种基本的证明方法后,教师可以通过改变问题中的条件、变换求证的结论、改变图形的形状等多种途径,让学生去自行求证,通过这种方式,指导学生从不同的角度、不同的层次去思考问题。[2]

5、通过变式训练,能够展现知识发生、发展、形成的完整认知过程。在教学实践中,笔者深深体会到变式教学的妙处,它非常符合学生的认知规律,学生可以把学到的方法灵活应用于各种题目中去,这既培养了学生灵活多变的思维方法,又提高了学生数学素养,从而有效地提高数学教学效果。三、初中数学证明题的解题步骤教师在具体教学实践中,要把上述的教学步骤作为自己的教学思路,同时,老师必须让学生通过具体的解题过程来指导学生掌握正确的解题步骤和技巧。下面通过一个例题来说明如何教导学生解答数学证明题。[例题]证明:等腰三角形两底角的平分线相等1.弄清题意一一复杂语言简单化此为“文字型”数学证明题,既没有图形

6、,也无直观的已知与求证。如何弄清题意呢?根据上面所讲述的“三读法”,找到命题的条件与结论至关重要,特别是隐形条件,这是解题成败的关键。[3]然后用自己的语言表述成:如果在等腰三角形中分别作两底角的平分线,那么这两条平分线长度相等。这样题目要求我们做什么就非常清晰了。2.根据题意,画出图形一一已知条件图形化。所谓已知条件图形化,就是利用各种不同的符号将已知条件在图形中直观地表示出来。图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。3.用数学的语言与符号写出已知和求证一一文字语言符号化。已知、求证必须用

7、数学的语言和符号来表示。已知:在AABC中,AB二AC,BD、CE分别是AABC的角平分线。求证:BD=CE4.综合分析已知、求证与图形,找到思路一一分析过程综合化。对于证明题,通常有两种思维方式:(1)正向思维。对于一般的题目,通过正向思考可以轻易解答,这里就不赘述了。(2)逆向思维,即从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中数学证明题,最好用的方法就是用逆向思维法。[4]同学们在读完一道题的题干后,感觉无从下手的话,可以先从结论出发,慢

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。