欢迎来到天天文库
浏览记录
ID:31631480
大小:279.50 KB
页数:14页
时间:2019-01-16
《北师大版数学九上《花边有多宽》word教案2课时.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2.1花边有多宽方程是刻画现实世界的一个有效数学模型,随着数学应用的日趋广泛,方程的工具作用显得愈发重要.一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.本节“花边有多宽”是一元二次方程的基础,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念,进而通过夹逼思想估算方程的解.本节的重、难点是一元二次方程的概念及其近似解.2.1花边有多宽(一)教学目标(一)教学知识点1.一元二次方程的概念2.一元二次方程的有关概念.(二)能力训练要求1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有
2、效数学模型.2.理解一元二次方程的概念(三)情感与价值观要求从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.教学重点一元二次方程的概念a≠0[教学难点一元二次方程的概念:a≠0教学方法启发诱导式教具准备投影片四张第一张:花边有多宽(记作投影片§2.1.1A)第二张:数学问题(记作投影片§2.1.1B)第三张:实际问题(记作投影片§2.1.1C)第四张:想一想(记作投影片§2.1.1D)教学过程Ⅰ.创设现实情景、引入新课[师]前面我们学过黄金分割,知道黄金比是多少吗?[生]黄金比是0.618.[师]很好,
3、你知道黄金比为什么是0.618吗?……[师]好,经济时代的今天,你能根据商品的销售利润作出一定的决策吗?你能为一个矩形花园提供多种设计方案吗?……从今天开始,我们来学习能解决这些问题的知识:第二章:一元二次方程.与一次方程和分式方程一样,一元二次方程也是刻画现实问题的有效数学模型.下面我们来学习第一节:花边有多宽.Ⅱ.讲授新课][师]我们来看一个实际问题(出示投影片§2.1.1A);大家来讨论讨论.一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?[生]我们可以利用列方程来求解.[师
4、]很好,那如何列方程来求解实际问题呢?想一想,前面我们学习的列一元一次方程的思路和方法.[生]要从题中,找出已知量、未知量及问题中所涉及的等量关系.这个题已知:这块地毯的长为8m,宽为5m,它中央长方形图案的面积为18m2.这个题所要求的是;地毯的花边有多宽.本题是以面积为等量关系.[师]这位同学分析得很好,下面我们共同来利用这些数量关系列出方程.[师生共析]如果设花边的宽为xm,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m,根据题意,可得方程(8-2x)(5-2x)=18注意:1.利用列方程解实际问题时,关键是要找到等量关系,如本题中的
5、面积等于长乘以宽.2.用一个含有未知数的代数式表示一个量,并且这个量有单位时,需要把这个代数式用括号括起来,如本题中的地毯中央长方形图案的长、宽等[师]好,下面我们来看一个数学问题(出示投影片§2.1.1B):观察下面等式102+112+122=132+142.你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?[生]这个题我们也可以利用数量关系列方程.[师]很好,如果设五个连续整数中的第一个数为x,那么后面的四个数该如何表示呢?[生甲]因为任何两个连续整数的差为1.所以,如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x
6、+1,x+2,x+3,x+4.[生乙]根据题意,则可得到方程x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.[生丙]老师,我觉得这个题也可以设中间的那个数为x,那么其余四个数依次为x-2,x-1,x+1,x+2,由此也可得方程(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2.这样行吗?[师]丙同学的思路很好,这个问题可以有不同的设未知数的方法,同学们可灵活设未知数,即可设这五个数中的任意一个,其他四个数可随之变化.下面我们来看一个实际问题(出示投影片§2.1.1C):如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离
7、为8m,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?[师]同学们分组讨论,列出方程.[生甲]墙与地面是垂直的,因而墙、地面和梯子构成了直角三角形.已知梯子的长为10m,梯子的顶端距地面的垂直距离为8m,所以由勾股定理可知,滑动前梯子底端距墙有6m.[生乙]设梯子底端滑动xm,那么滑动后梯子底端距墙(6+x)m,根据题意,利用勾股定理,可得方程(x+6)2+(8-1)2=102,即(x+6)2+72=102.[师]同学们讨论得很完整,接下来想一想,议一议(出示投影片§2.1.1D):由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18,
8、x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,(x
此文档下载收益归作者所有