欢迎来到天天文库
浏览记录
ID:31602905
大小:5.09 MB
页数:20页
时间:2019-01-15
《变力做功模型-高中物理系列模型之过程模型 ---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题10变力做功模型模型界定由于只适用于恒力所做功,故在本模型中主要归纳各种情况下变力做功的判定及计算.模型破解1变力做功情况的的判定(i)可利用功能关系来判定:①力对物体做正功时物体的能量增加,力对物体做负功时物体的能量减少.②有对应形式的势能的变力(弹簧弹力、点电荷间静电力等)做功时,对应形式的势能增大时该力做负功,否则变力做正功.(ii)可利用力的方向与瞬时速度方向的夹角来判定:①力与物体的瞬时速度方向之间的夹角始终保持为锐角(角度可以变化)时,力对物体做正功;②力与物体的瞬时速度方向之间的夹角始终保持为直角时力不
2、对物体做功;③力与物体的瞬时速度方向之间的夹角始终保持为钝角时力对物体做负功.(iii)可利用力的方向与位移方向的夹角来判定:当力的方向不变时,可由力与位移的方向间夹角来判定.例1.如图所示,把AB小球由图中位置同时由静止释放(绳开始时拉直),则在小球向左下摆动时,下列说法正确的是A绳OA对A球做正功B绳AB对B球不做功C绳AB对A球做负功D绳AB对B球做正功【答案】CD【解析】在小球下摆过程中,由于B距O点较远,转动较慢,位置落后于A球.从运动角度来看,A球绕O点转动,B球一方面随A球转动,同时还相对于A球向后转动,如
3、图所示.则A球的瞬时速度时刻与绳OA垂直,与绳AB之间夹角为钝角;而B球相对A球的速度方向与绳AB垂直,其对地的瞬时速度方向与绳AB之间夹角为锐角.故可知绳OA对A球不做功,绳AB对A球做负功、对B球做正功,AB错误CD正确.例2.如图所示,一根质量可以忽略不计的刚性轻杆,一端O为固定转轴,杆可在竖直平面内无摩擦的转动,杆的中心点及另一端各固定一个小球A和B。已知两球质量相同,现用外力使杆静止在水平方向,然后撤去外力,杆将摆下,从开始运动到杆处于竖直方向的过程中A重力对A球的冲量等于重力对B球的冲量B杆的弹力对A球做正功
4、,对B球做负功C杆的弹力对A球做负功,对B球做正功D杆的弹力对A球和B球均不做功【答案】AC中机械能减少,则杆的弹力对A球做负功,同理可知杆的弹力对B球做负功,BD错误C正确.模型演練1.在2008北京奥运会上,俄罗斯著名撑杆跳运动员伊辛巴耶娃以5.05m的成绩第24次打破世界纪录。图为她在比赛中的几个画面。下列说法中正确的是A.运动员过最高点时的速度为零;B.撑杆恢复形变时,弹性势能完全转化为动能;C.运动员要成功跃过横杆,其重心必须高于横杆;D.运动员在上升过程中对杆先做正功后做负功。【答案】D2.如图所示,质量均为
5、m的ab两球固定在轻杆的两端,杆可绕O点在竖直平面内无摩擦的转动,已知两球距O点的距离L1>L2.今在水平位置由静止释放,则在a下降过程中,杆对b球的作用力:A.方向沿BO,不做功B.方向沿BO,做正功C.方向与BO成一定夹角,做正功D.方向与BO成一定夹角,做负功【答案】C【解析】在B球上升过程中,b球的重力势能和动能均增大,即b球的机械能增大,只能是杆对b球做了正功.而b球绕O点沿圆弧运动,速度方向与杆垂直,则杆对b球的弹力一定不沿BO方向,否则杆对b球不做功,故C正确.2.变力做功多少的定性比较由可知,定性比较某些
6、特定阶段中变力所做功时,可比较相同大小的力方向上的位移,也可比较相同位移上的分力.例3.如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点起由静止开始上升.若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1、W2,滑块经B、C两点时的动能分别为EkB、EkC,图中AB=BC,则一定()A.W1>W2B.W1EkCD.EkB7、程中,绳端移动的距离Δs2.据W1=FΔs1,W2=FΔs2,可知W1>W2.(解二)如图乙.拉力F对绳所做功与绳对环所做功相同.由于拉力F大小不变,可知绳对环的拉力大小不变.将绳对环的拉力沿水平方向与竖直方向分解,则有,,由于AB=BC,可知,故W1>W2.因F在竖直方向上的分力逐渐减小,虽在A点处力F的竖直分力大于环的重力,但在从B到C的过程中力F在竖直方向上的分力是否小于重力及在什么位置小于重力都是未知的,故不能判定BC处的速度大小也即动能大小.从功能的角度来看,从A到B与从B到C的过程中,重力做的负功相等,但力8、F做的正功却是减少的,从A到B合力做功为正值,但不能判定从B到C的过程中合力做功情况,故不能判定BC两点处动能的大小.答案只有A项.3.变力做功的定量计算(i)方向不变的变力做功可用其平均值计算如图1,当力与物体发生的位移成线性关系时,力对位移的平均值等于此过程中力的最大值与力的最小值的算术平均值(注意力对位移的平均
7、程中,绳端移动的距离Δs2.据W1=FΔs1,W2=FΔs2,可知W1>W2.(解二)如图乙.拉力F对绳所做功与绳对环所做功相同.由于拉力F大小不变,可知绳对环的拉力大小不变.将绳对环的拉力沿水平方向与竖直方向分解,则有,,由于AB=BC,可知,故W1>W2.因F在竖直方向上的分力逐渐减小,虽在A点处力F的竖直分力大于环的重力,但在从B到C的过程中力F在竖直方向上的分力是否小于重力及在什么位置小于重力都是未知的,故不能判定BC处的速度大小也即动能大小.从功能的角度来看,从A到B与从B到C的过程中,重力做的负功相等,但力
8、F做的正功却是减少的,从A到B合力做功为正值,但不能判定从B到C的过程中合力做功情况,故不能判定BC两点处动能的大小.答案只有A项.3.变力做功的定量计算(i)方向不变的变力做功可用其平均值计算如图1,当力与物体发生的位移成线性关系时,力对位移的平均值等于此过程中力的最大值与力的最小值的算术平均值(注意力对位移的平均
此文档下载收益归作者所有