欢迎来到天天文库
浏览记录
ID:31595306
大小:929.00 KB
页数:12页
时间:2019-01-15
《八年级上册经典几何的题目分类训练》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案八年级上册经典几何题分类训练常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体
2、做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.EE特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、以等边三角形为基础1.△DAC,△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD(2)CM=CN(3)△CMN为等边三角形(4)MN∥BC2.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交
3、MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).3、如图所示,已知△ABC和△BDE都是等边三角形。下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=600,⑤△BFG是等边三角形;⑥FG∥AD。其中正确的有()A3个B4个C5个D6个DACBNM精彩文档实用标准文案4.如图,△ABC为等边三角形,AB=6cm,O为AB上的任意一点(与
4、B点不重合),OD⊥BC于D;DE⊥AC于E;EP⊥AB于P。问:当OB的长等于多少时,点P与点O重合?DECPOBA二、以等腰直角三角形为基础5.(2008山东泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结.(1)请找出图2中的全等三角形图1图2DCEAB(第22题),并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.6、(2009年牡丹江)已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到不垂直时,在图2和图
5、3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明.AECFBD图1图3ADFECBADBCE图2F7、用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°精彩文档实用标准文案角的顶点与点A重合,两边分别与AB、AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC、CD相交于点E、F时(如图所示),通过观察或测量BE、CF的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱
6、形的两边BC、CD的延长线相交于点E、F时(如图所示),你在(1)中得到的结论还成立吗?说明理由。8.如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么?(3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么?9.如图,两个全等的含30°、60°角的三角板ADE和三角板AB
7、C放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.精彩文档实用标准文案10.已知:在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角△ADE,解答下列各题:如果AB=AC,∠BAC=90°.(i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的位置关系为(ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么?11.如图:在△ABC中,
8、BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何
此文档下载收益归作者所有