欢迎来到天天文库
浏览记录
ID:31588207
大小:1.30 MB
页数:13页
时间:2019-01-14
《椭圆的方程及几何性质-2019届高考数学(文)提分必备30个黄金考点 ---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【考点剖析】1.命题方向预测:高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等.选择题或填空题抛物线与椭圆、双曲线综合趋势较强,涉及直线与抛物线位置关系的解答题增多.2.课本结论总结:1.椭圆的
2、概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于
3、F1F2
4、)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;②若,则集合P为线段;③若,则集合P为空集.2.椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称曲线关于轴、原点对称顶点长轴顶点,短轴顶点长轴顶点,轴顶点焦点焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为3.名师二级结论:椭圆:一条规律椭圆焦点位置与x2,y2系数
5、间的关系:给出椭圆方程+=1时,椭圆的焦点在x轴上m>n>0;椭圆的焦点在y轴上0<m<n.两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程.三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.(2)求椭圆离心率e时,只要
6、求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1).(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.4.考点交汇展示:(1)与数列交汇【2018届云南省师范大学附属中学高三月考二】点在椭圆上,是椭圆的两个焦点,,且的三条边,,成等差数列,则此椭圆的离心率是()A.B.C.D.【答案】D【解析】设,由椭圆的定义得:,∵的三条边成等差数列,∴,联立,,解得,由余弦定理得:,将代入可得,,整理得:,由,得,
7、解得:或(舍去),故选D.(2)与解三角形交汇【2018年理数全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A.B.C.D.【答案】D(3)与平面向量交汇设是椭圆的左、右两个焦点,若椭圆存在一点,使(为坐标原点),且,则椭圆的离心率为()A.B.C.D.【答案】A【考点分类】考向一椭圆的定义及其应用1.【2018年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A.B.C.D.【答案】D2.【2018届河南省驻马店市正
8、阳县第二高级中学高三上开学】以的顶点为焦点,长半轴长为4的椭圆方程为()A.B.C.D.【答案】D【解析】双曲线的焦点为,顶点为,双曲线的顶点为焦点,长半轴长为的椭圆中,,椭圆的方程为,故选D.【方法总结】1.涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.2.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解.考向二椭圆的标准方程及其几何性质1.【2016高考新课标1文数】直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离
9、心率为()(A)(B)(C)(D)【答案】B【解析】如图,由题意得在椭圆中,在中,,且,代入解得,所以椭圆得离心率得,故选B.yxOBFD2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【方法总结】1.椭圆的几何性质常涉及一些不等关系,例如对椭圆,有-a≤x≤a,-b≤y≤b,010、几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.3.求椭圆离心率问题,应先将e用有关的一些量表示出来,再利用其中的一些关系构造出关于e的等式或不等式,从而求出e的值或范围.离心率e与a、b的关系:.【热点预测】1.【2018届南宁市高三摸底】已知椭圆的一条弦所在的直线方程是,弦的中点坐标是,则椭圆的离心率是()A.B.C.D.【答案】C【解析】设直线与椭圆交点为,分别代入
10、几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.3.求椭圆离心率问题,应先将e用有关的一些量表示出来,再利用其中的一些关系构造出关于e的等式或不等式,从而求出e的值或范围.离心率e与a、b的关系:.【热点预测】1.【2018届南宁市高三摸底】已知椭圆的一条弦所在的直线方程是,弦的中点坐标是,则椭圆的离心率是()A.B.C.D.【答案】C【解析】设直线与椭圆交点为,分别代入
此文档下载收益归作者所有