kitada,quantum mechanics

kitada,quantum mechanics

ID:31471999

大小:1.00 MB

页数:182页

时间:2019-01-10

kitada,quantum mechanics_第1页
kitada,quantum mechanics_第2页
kitada,quantum mechanics_第3页
kitada,quantum mechanics_第4页
kitada,quantum mechanics_第5页
资源描述:

《kitada,quantum mechanics》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、arXiv:quant-ph/0410061v414Feb200912QUANTUMMECHANICS∗HitoshiKitada†December28,2003∗c1998–2003byHitoshiKitada,AllRightsReserved†GraduateSchoolofMathematicalSciences,UniversityofTokyo,Komaba,Meguro,Tokyo153-8914,Japan,e-mail:kitada@kims.ms.u-tokyo.ac.jp,webpag

2、e:http://kims.ms.u-tokyo.ac.jp/iiPrefaceIconsiderinthisbookaformulationofQuantumMechanics,whichisoftenabbreviatedasQM.UsuallyQMisformulatedbasedonthenotionoftimeandspace,bothofwhicharethoughtapriorigivenquantitiesornotions.However,whenwetrytodefinethenotiono

3、fvelocityormomentum,weencounteradifficultyaswewillseeinchapter1.Theproblemisthatifthenotionoftimeisgivenapriori,thevelocityisdefinitelydeterminedwhengivenaposition,whichcontradictstheuncertaintyprincipleofHeisenberg.WethensetthebasisofQMonthenotionofpositionan

4、dmomentumoperatorsasinchapter2.Timeofalocalsystemthenisdefinedapproximatelyasaratio

5、x

6、/

7、v

8、betweenthespacecoordinatexandthevelocityv,where

9、x

10、,etc.denotestheabsolutevalueorlengthofavectorx.InthisformulationofQM,wecankeeptheuncertaintyprinciple,andtimeisaquanti

11、tythatdoesnothaveprecisevaluesunliketheusuallysupposednotionoftimehas.Thefeatureoflocaltimeisthatitisatimepropertoeachlocalsystem,whichisdefinedasafinitesetofquantummechanicalparticles.Wenowhaveaninfinitenumberoflocaltimesthatareuniqueandpropertoeachlocalsyste

12、m.Basedonthenotionoflocaltime,themotioninsidealocalsystemisdescribedbytheusualSchr¨odingerequation.WeinvestigatesuchmotioninagivenlocalsysteminpartII.Thisisausualquantummechanics.Aftersomeexcursionoftheinvestigationoflocalmotion,weconsiderinpartIIItherelati

13、verelationormotionbetweenplurallocalsystems.Weregardeachlocalsystem’scenterofmassasaclassicalparticle.Thenastherelativecoordinateinsidealocalsystemisindependentofitscenterofmass,wecansetanarbitraryruleontherelationamongthosecentersofmassoflocalsystems.Weado

14、pttheprinciplesofgeneralrelativityastherulesthatgoverntherelationsofplurallocalsystems.Bythereasonthatthecenterofmassandtheinnercoordinateareindependent,wecancombinequantummechanicsandgeneralrelativity

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。