欢迎来到天天文库
浏览记录
ID:31460908
大小:336.50 KB
页数:8页
时间:2019-01-10
《高中数学 第一章 计数原理 4 简单计数问题知识导航 北师大版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求§4简单计数问题自主整理1.区别排列问题与组合问题的关键是元素是否_____________________.2.解决相邻元素问题的方法是____________________.3.解决元素不相邻问题的方法是____________________.4.有特殊要求的元素问题常用____________________.5.有特殊要求的位置问题常用__________________
2、__.6.无序平均分组问题常用____________________.7.相同元素分组问题常用____________________.8.“至多”“至少”问题常用____________________.高手笔记1.捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.例如,一般地,n个不同元素排成一列,要求其中某m(m≤n)个元素必相邻的排列有A·A个.其中A是一个“整体排列”,而A则是“局部排列”.2.插空法:先把一般元素排列好,然后把待定元素
3、插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.运用插空法解决“元素不相邻问题”时,要同时借助框图和数数法求解.3.占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.4.调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有A种,m(m4、列,其中m个元素次序一定,共有种排列方法.记忆规律是:顺序一定作除法.名师解惑1.解排列、组合应用题应注意哪些问题?剖析:做排列、组合的应用题,一般来讲要解决好三大难题:一是确定问题的属性,即所给问题是排列还是组合;二是确定解题策略,即是要分类求解还是分步求解;三是选择恰当的解题方法,即是用直接法还是间接法.而这三大难题的关键则是真正弄清“三对关系”的深刻含义.(1)“分类与分步”的关系分类复杂事件A的排列与组合问题,需要对A在一个标准下分类讨论,把A分解为n类简单事件A1,A2,…,An.分类的原则是:A=A1∪A2∪…∪An,5、Ai∩Aj=(i≠j,i、j=1,2,…,n).在这样的原则下对事件A分类,能够确保分类的不漏不重.配合各任课老师,激发学生的学习兴趣,挖掘他们的学习动力,在学生中培养苦学精神,发扬拼搏精神,形成以勤学为荣的班风;充分利用学校开展的“不比基础比进步,不比聪明比勤奋”以及具有储能特色的“当月之星”的评选活动,积极探索素质教育的新途径在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求把A分为A1,A2,…,An的同时,对应的办法S也随之6、被分为n类办法S1,S2,…,Sn,且S=S1∪S2∪…∪Sn,Si∩Sj=(i≠j;i、j=1,2,…,n).其结果用分类加法计数原理计算.分步事件A完成分类以后,对每一类要进行分步,分步要做到“步骤连续”和“步骤独立”,这样就可以确保对每一类事件的分步不漏不重.事件的分步对应方法的分步.如A1分为n步B1,B2,…,Bn,则对应的有S1被分为n种方法S11,S12,…,S1n.其结果用分步乘法计数原理计算.由此可见,我们可以得到两点结论:其一,分类与分步是区别选用分类加法计数原理和分步乘法计数原理的唯一标准,即分类相加,分步相7、乘;其二,若把事件A分为n类简单事件A1,A2,…,An,并且完成事件Ak又需分作Sk步(k=1,2,3,…,n),对应每一步又可有Ski(i=1,2,3,…,n)种不同方法,这样完成事件A就共有N=(S11·S12·S13…S1n)+(S21·S22·S23…S2n)+…+(Sn1·Sn2·Sn3…Snn)种不同方法.(2)“有序与无序”的关系界定排列与组合问题的唯一标准是“顺序”,“有序”是排列问题,“无序”是组合问题.排列与组合问题并存的时候,解答排列与组合问题,一般采用先组合后排列的方法解答.(3)“元素与位置”的关系解答8、排列与组合问题,界定哪些事物是元素,哪些事物是位置至关重要,又没有唯一的定势标准,所以要辩证地去看待元素与位置.解题过程中,要优先安排有限制条件的特殊元素和特殊位置,并灵活运用“捆绑法”和“插空法”,“直接法”和“间接法”.2.排列、组合应用题的基
4、列,其中m个元素次序一定,共有种排列方法.记忆规律是:顺序一定作除法.名师解惑1.解排列、组合应用题应注意哪些问题?剖析:做排列、组合的应用题,一般来讲要解决好三大难题:一是确定问题的属性,即所给问题是排列还是组合;二是确定解题策略,即是要分类求解还是分步求解;三是选择恰当的解题方法,即是用直接法还是间接法.而这三大难题的关键则是真正弄清“三对关系”的深刻含义.(1)“分类与分步”的关系分类复杂事件A的排列与组合问题,需要对A在一个标准下分类讨论,把A分解为n类简单事件A1,A2,…,An.分类的原则是:A=A1∪A2∪…∪An,
5、Ai∩Aj=(i≠j,i、j=1,2,…,n).在这样的原则下对事件A分类,能够确保分类的不漏不重.配合各任课老师,激发学生的学习兴趣,挖掘他们的学习动力,在学生中培养苦学精神,发扬拼搏精神,形成以勤学为荣的班风;充分利用学校开展的“不比基础比进步,不比聪明比勤奋”以及具有储能特色的“当月之星”的评选活动,积极探索素质教育的新途径在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求把A分为A1,A2,…,An的同时,对应的办法S也随之
6、被分为n类办法S1,S2,…,Sn,且S=S1∪S2∪…∪Sn,Si∩Sj=(i≠j;i、j=1,2,…,n).其结果用分类加法计数原理计算.分步事件A完成分类以后,对每一类要进行分步,分步要做到“步骤连续”和“步骤独立”,这样就可以确保对每一类事件的分步不漏不重.事件的分步对应方法的分步.如A1分为n步B1,B2,…,Bn,则对应的有S1被分为n种方法S11,S12,…,S1n.其结果用分步乘法计数原理计算.由此可见,我们可以得到两点结论:其一,分类与分步是区别选用分类加法计数原理和分步乘法计数原理的唯一标准,即分类相加,分步相
7、乘;其二,若把事件A分为n类简单事件A1,A2,…,An,并且完成事件Ak又需分作Sk步(k=1,2,3,…,n),对应每一步又可有Ski(i=1,2,3,…,n)种不同方法,这样完成事件A就共有N=(S11·S12·S13…S1n)+(S21·S22·S23…S2n)+…+(Sn1·Sn2·Sn3…Snn)种不同方法.(2)“有序与无序”的关系界定排列与组合问题的唯一标准是“顺序”,“有序”是排列问题,“无序”是组合问题.排列与组合问题并存的时候,解答排列与组合问题,一般采用先组合后排列的方法解答.(3)“元素与位置”的关系解答
8、排列与组合问题,界定哪些事物是元素,哪些事物是位置至关重要,又没有唯一的定势标准,所以要辩证地去看待元素与位置.解题过程中,要优先安排有限制条件的特殊元素和特殊位置,并灵活运用“捆绑法”和“插空法”,“直接法”和“间接法”.2.排列、组合应用题的基
此文档下载收益归作者所有