欢迎来到天天文库
浏览记录
ID:3144917
大小:488.50 KB
页数:12页
时间:2017-11-19
《基于fpga的fft算法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于FPGA的可扩展高速FFT处理器的设计与实现来源:电讯技术 作者:刘晓明 时间:2007-07-12 发布人:卢春妙 本文提出了基于FPGA实现傅里叶变换点数可灵活扩展的流水线FFT处理器的结构设计以及各功能模块的算法实现,包括高组合数FFT算法的流水线实现结构、级间混序读/写RAM地址规律、短点数FFT阵列处理结构以及补码实现CORDIC算法的流水线结构等。利用FPGA实现的各功能模块组装了64点FFT处理器。从其计算性能可知,在输入数据速率为20MHz时,利用此结构实现的FFT处理器计算1024点
2、FFT的运算时间约为52μs。 一、引言 DFT(离散傅里叶变换)作为将信号从时域转换到频域的基本运算,在各种数字信号处理中起着核心作用,其快速算法FFT(快速傅里叶变换)在无线通信、语音识别、图像处理和频谱分析等领域有着广泛的应用。用大规模集成电路FPGA(现场可编程门阵列)来实现FFT算法时,需要重点考虑的不再是算法运算量,而是算法的复杂性、规整性和模块化,因为算法的简单性和规整性将更适合大规模集成,更方便于版图设计,而算法的模块化更有利于FFT处理器的灵活扩展。 组合数FFT算法和CORDIC
3、(坐标旋转数字计算机)算法结合起来,在计算长点数、可扩展FFT时具有较大的优越性[1,2]。而面向高速、大容量数据流的FFT的实时处理,可以通过VLSI(超大规模集成电路)器件的并行处理或多级流水线处理等来达到。特别是多级流水线处理的FFT结构使得基于FPGA器件的FFT处理器完成不同点数的FFT计算时可以通过增减模块级数很容易地实现。二、组合数N=r1r2点混合基FFT原理 计算N点DFT: 式中k=0,1,…,N-1。 若N=r1r2的组合数,可将n(n<N)表示为 式(2)的意义在于,计
4、算组合数N=r1r2点DFT,等价于先求出r2组r1点的DFT,其结果经过对应旋转因子的相位旋转后,再计算r1组r2点的DFT。实际应用中,DFT往往用它的快速算法FFT实现,因而式(2)中的r1点DFT和r2点DFT都用r1点FFT和r2点FFT实现。三、可扩展FFT处理器实现结构 根据式(2)的FFT算法原理设计FFT处理器的可扩展结构如图1所示。 采用流水线模块化级联结构,把FFT处理器划分成短点数FFT、级间混序RAM和相位旋转等功能模块,设计的各功能模块可以重复利用,通过复用或增减各功
5、能模块可以灵活改变FFT处理器的计算规模,而且不增加设计量。在图1结构中,当Li=1时,就演变成了基2FFT;当Li=2时,就演变成了基4FFT;同理,当Li≠Lj时,就演变成了高组合数的混合基FFT。1.短点数FFT阵列结构 -Tukey算法结构实现时,有大量的复数乘法实际上转化为加减运算,所以用阵列结构实现不但具有速度快的优点,而且所用器件资源也减少很多,通过对阵列结构短点数FFT进行时分复用,可以提高运算单元的使用效率。2.相位旋转运算单元 实现短点数FFT级间相位旋转,采用ROM存储旋转因
6、子与数据复乘的传统方法,不仅涉及乘法运算,而且会消耗大量存储器资源。 利用CORDIC算法实现组合数FFT级间数据的相位旋转,把乘法转化成加减法运算,适合FPGA的大规模集成。可以设计出统一结构的CORDIC处理器模块,重复利用于不同级间实现相位旋转,而且其控制逻辑非常简单。 (1)CORDIC算法原理 复数P=x+jy旋转角度θ得到Q的表达式: 如果旋转角度θ可以分解成n个小角度φi之和,即: 公式: (2)CORDIC处理器结构设计 本文提出了一种流水线CORDIC处理
7、器结构的解决方案。实现式子(4)的迭代运算时采用补码移位和补码加减运算,可以减少大量求补运算,其迭代结构如图2所示。 前者在于左移补零的位数的不同,这样,只需要改变n0k0的放大倍数(改变左移低位补零的位数),就可以把同一方向向量功能模块级联到图1FFT处理器的不同级间来计算CORDIC处理器的MSBi,这就大大地减小了重复设计,其迭代结构如图3所示。3.RAM结构及其级间数据混序用流水线读/写RAM地址发生器的设计 设计的RAM,每个存储单元为32bit,高16位为复数的实部,低16位为复数的虚部
8、。输入输出数据接口用RAM设计为乒乓结构,用两块相同的RAM交替读出或交替写入数据,这样就放宽了对I/O操作速度的要求,使得外围电路可以不必工作于FPGA系统时钟。 级与级之间数据混序用RAM设计为读/写RAM,对RAM同一存储单元用两个时钟完成一次读/写操作,即用流水线读/写同一块RAM来实现级与级之间的数据混序。此结构取代了用两块RAM完成数据混序的乒乓结构的传统方法,不涉及存储器之间的读写切换,控制逻辑非
此文档下载收益归作者所有