圆锥曲线题型的总结

圆锥曲线题型的总结

ID:31439589

大小:520.00 KB

页数:10页

时间:2019-01-10

圆锥曲线题型的总结_第1页
圆锥曲线题型的总结_第2页
圆锥曲线题型的总结_第3页
圆锥曲线题型的总结_第4页
圆锥曲线题型的总结_第5页
资源描述:

《圆锥曲线题型的总结》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案直线和圆锥曲线常考ian锥曲线经题型运用的知识:1、中点坐标公式:,其中是点的中点坐标。2、弦长公式:若点在直线上,则,这是同点纵横坐标变换,是两大坐标变换技巧之一,或者。3、两条直线垂直:则两条直线垂直,则直线所在的向量4、韦达定理:若一元二次方

2、程有两个不同的根,则。常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题问题九:四点共线问题问题十:范围问题(本质是函数问题)问题十一、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线与椭圆

3、始终有交点,求的取值范围精彩文档实用标准文案题型二:弦的垂直平分线问题例题2、过点T(-1,0)作直线与曲线N:交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。解:依题意知,直线的斜率存在,且不等于0。设直线,,,。由消y整理,得①②由韦达定理,得:。题型三:动弦过定点的问题例题3、已知椭圆C:的离心率为,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线与x轴交于点T,点P为直线上异于点T的任一点,直

4、线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论解:(I)精彩文档实用标准文案题型四:过已知曲线上定点的弦的问题例题4、已知点A、B、C是椭圆E:上的三点,其中点A是椭圆的右顶点,直线BC过椭圆的中心O,且,,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线对称,求直线PQ的斜率。解题型五:共线向量问题例题5、设过点D(0,3)的直线交曲线M:于P、Q两点,且,求实数的取值范围。解:设P(x1,y1),

5、Q(x2,y2),(x1,y1-3)=(x2,y2-3)即判别式法、韦达定理法、配凑法设直线PQ的方程为:,由消y整理后,得P、Q是曲线M上的两点精彩文档实用标准文案=即①由韦达定理得:即②由①得,代入②,整理得,解之得当直线PQ的斜率不存在,即时,易知或。总之实数的取值范围是。题型六:面积问题例题6、已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的距离为。(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。解:精彩文档实用标

6、准文案题型七:弦或弦长为定值问题例题7、在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.由韦达定理

7、得x1+x2=2pk,x1x2=-2p2.于是==.(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则=.===令,得为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.解法2:精彩文档实用标准文案(Ⅰ)前同解法1,再由弦长公式得=又由点到直线的距离公式得.从而,(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为将直线方程y=a代入得设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有

8、令为定值,故满足条件的直线l存在,其方程为.即抛物线的通径所在的直线。题型八:角度问题 例题8、(如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:(Ⅰ)求点P的轨迹方程;(Ⅱ)若,求点P的坐标.解:精彩文档实用标准文案问题九:四点共线问题例题9、设椭圆过点,且着焦点为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上解(1)由题意:,解得,所求椭圆方程为(2)方法一设点Q、A、B的坐标分别为。由题设知均不为零,记,则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。