欢迎来到天天文库
浏览记录
ID:31426478
大小:863.50 KB
页数:10页
时间:2019-01-09
《江苏省2013届南通、泰州、扬州、连云港、淮安五市高三第三次模拟考试数学试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、WORD完美整理版江苏省南通、泰州、扬州、连云港、淮安五市2013届高三第三次调研测试数学参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.NY(第3题)开始开始1.已知集合,,则▲.【答案】2.设复数满足(是虚数单位),则复数的模为▲.【答案】3.右图是一个算法流程图,则输出的的值是▲.【答案】4.“”是“”成立的▲条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写)(第5题)0.01000.01750.00250.00500.0150406080100120140速度/km/h【答案】必要不充分5.根据某固定测
2、速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如右图所示.该路段限速标志牌提示机动车辆正常行驶速度为60km/h~120km/h,则该时段内非正常行驶的机动车辆数为▲.【答案】6.在平面直角坐标系中,抛物线上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为▲.【答案】4范文范例参考指导WORD完美整理版7.从集合中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为▲.【答案】O11515x(第9题)y8.在平面直角坐标系中,设点为圆:上的任意一点,点(2,)(),则线段长度的最小值为▲.【答案】9.函数
3、,,在上的部分图象如图所示,则的值为▲.【答案】10.各项均为正数的等比数列中,.当取最小值时,数列的通项公式an=▲.【答案】11.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点,,,.若,则实数的值为▲.【答案】12.过点作曲线:的切线,切点为,设在轴上的投影是点,过点再作曲线的切线,切点为,设在轴上的投影是点,…,依次下去,得到第个切点.则点的坐标为▲.【答案】13.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB,,CD.范文范例参考指导WORD完美整理版若,则的值为▲.【答案】14.已知实数a1,a2,a3,a4满
4、足a1a2a3,a1a42a2a4a2,且a1a2a3,则a4的取值范围是▲.【答案】二、解答题15.如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.(第15题)证明:(1)在矩形中,,又平面,平面,所以平面.………6分(2)如图,连结,交于点,连结,在矩形中,点为的中点,又,故,,………9分又,平面,所以平面,………12分又平面,所以平面平面.………14分16.在△ABC中,角,,所对的边分别为,,c.已知.(1)求角的大小;范文范例参考指导WORD完美整理版(2)设,求T的取值范围.解:(1)在△ABC中,,…
5、……3分因为,所以,所以,………5分因为,所以,因为,所以.………7分(2)………11分因为,所以,故,因此,所以.………14分17.某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8mm;图2是双层中空玻璃,厚度均为4mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)(1)设室内,室外温度均分别为,,内层玻璃外侧温度为,外层玻璃内侧温度为,范文
6、范例参考指导WORD完美整理版且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用,及表示);(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?图1图2墙墙8T1T2室内室外墙墙x4T1T2室内室外4(第17题)解:(1)设单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量分别为,,则,………2分………6分.………9分(2)由(1)知,当4%时,解得(mm).答:当mm时,双层中空玻璃通过的热量只有单层玻璃的4%.……14分范文范例参考指导WORD完美整理版18.如图,在平面直角
7、坐标系中,椭圆的右焦点为,离心率为.(第18题)分别过,的两条弦,相交于点(异于,两点),且.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.(1)解:由题意,得,,故,从而,所以椭圆的方程为.①………5分(2)证明:设直线的方程为,②直线的方程为,③………7分由①②得,点,的横坐标为,由①③得,点,的横坐标为,………9分记,,,,则直线,的斜率之和为………13分.………16分范文范例参考指导WORD完美整理版19.已知数列是首项为1,公差为的等差数列,数列是首项为1,公比为的等比数列.(1)若,,求数列的前项和;(2)若存在正整数,使得.试比较
8、与的大小,并说明理由.解:(1)依题意,,故,所以,………3分令,①则,②①②得
此文档下载收益归作者所有