一种改进的点云数据组合精简算法

一种改进的点云数据组合精简算法

ID:31363381

大小:109.00 KB

页数:7页

时间:2019-01-09

一种改进的点云数据组合精简算法_第1页
一种改进的点云数据组合精简算法_第2页
一种改进的点云数据组合精简算法_第3页
一种改进的点云数据组合精简算法_第4页
一种改进的点云数据组合精简算法_第5页
资源描述:

《一种改进的点云数据组合精简算法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、一种改进的点云数据组合精简算法  摘要:在逆向工程中,点云数据的精简是一个重要的步骤,精简的质量直接关系到后续曲面重构的效率。文章针对广州灰塑曲率较大,凹凸面较多的特点,提出了一种基于曲率和均匀精简的点云数据精简方法:利用包围盒法对散乱的点云数据进行拓扑规则排序,建立点的K-邻域集,计算点云在某点处的曲率,在曲率较大处保留更多的特征点,但是曲率较小处会删除较多的点云数据。文章在此基础上再利用均匀网格的方法对初始精简后的点云进行重采样处理,使得曲率较小处的特征点也能保留下来。  关键词:逆向工程;灰塑;曲率;均匀精简;点云数据;K-邻域  随着三维数据采集设备

2、的日益发展和计算机技术的不断成熟,文物保护工作者可以方便而精准地获取文物的三维物体表面数据点云信息。广州灰塑作为非物质文化遗产的一部分,更应好好保护。在与广州灰塑文化研究院合作的项目(广州市花都区科技计划项目)中发现灰塑点云数据的采集有如下的特点:灰塑作品种类繁多、体积较大,采集到的点云数据极为庞大,单个作品的点云数量级达到百万以上。在三角剖分中,由于过密点云结构的三角面片模型过于庞大,传输、显示或处理都将消耗大量的时间和计算机资源;在曲面重构时,过密的点云不但计算量大,而且可能影响其光顺性及存储。因此,如何在保持测量对象信息的情况下对测量点进行最大程度地精

3、简,对于准确、快速地点云预处理或其他的后续工作非常重要。7  国内外对点云精简的研究,已经有了很多研究成果。刘涛提出了一种基于包围盒法的散乱点云数据的曲率精简,该方法虽然对特征点保留得很好,但是对曲率较小的平滑区域剔除的点云数据太多,不利于模型后续的三维重建。程效军等提出了基于自适应八叉树的点云数据压缩方法,该方法能较好地保留点云数据的细节和轮廓特征,但是构建八叉树的过程较复杂,且一些经验阈值(如包围盒的大小)的设定也尚待改进。  经过对各种精简算法的比较,结合灰塑的种类繁多的特点,即有的凹凸不平(平均曲率值较大),有的较光顺(平均曲率较小),文章提出了一种

4、基于曲率和均匀精简的点云数据精简方法,核心思想是基于包围盒来建立K-邻域,求出整个点云数据的平均曲率,根据曲率精简原则选取特征点云,然后针对曲率较小处空白较多的问题采用均匀精简方法。首先,基于曲率的精简算法对处理曲率变化较大的点云数据优势明显,其次,均匀精简算法能保留曲率较小处的特征点,避免空白区域的产生,且算法原理简单。  1改进的点云数据组合精简算法  算法的基本思想:  (1)将原始点云利用包围盒法进行剖分,确立每个K-邻域的中心点,并对所有中心点的K-邻域完成搜索。计算邻域内的曲率并依照曲率精简原则对点云进行精简,曲率较大处保留较多点云,曲率较小处点

5、云精简多一些。7  (2)对基于曲率精简中被剔除的点进行重采样,将点云数据划分到栅格中,每个栅格中保留距离栅格中心距离最近的点,然后将保留下来的点加入第一步保留的点中,最终得到精简后的点云。  1.1基于包围盒法建立K-邻域  论文中原始点云数据分布没有规律性,缺少明显的几何拓扑关系。因此,需要建立点云的拓扑关系来提高精简点云的效率,这里采用包围盒法来对点云进行剖分并建立K-邻域。包围盒法建立K-邻域的方法参照文献,文章在此不作详述。  点云数据在X,Y,Z方向上的最值Xmin,Xmax,Ymin,Ymax,Zmin,Zmax,设n为选取点云的总个数,其值根

6、据点云的分布情况和密集程度选取,一般为24~32时可以达到精度要求,文章中由于点云数据较密集,n取32,则自适应的包围盒大小为:(1)  包围盒个数:设X在轴方向上,包围盒个数为Nx,则  Nx=ceil[(Xmax-Xmin)/S0]  同理,沿着X轴和y轴方向的包围盒个数为分别为  Ny=ceil[(Ymax-Ymin)/S0]  Nz=ceil[(Zmax-Zmin)/S0]  所以总的包围盒个数为Nmax=NxNyNz  通过上述步骤取的32个点利用最小二乘法来拟合二次曲面,二次曲面方程如(2)式所示。(2)  1.2基于曲率的点云数据精简  1.2

7、.1曲率的计算  由(2)式建立的拟合方程,根据最小二乘原理求出拟合方程的系数,即要使下式取得最小值:(3)7  (3)式中xk,yk,zk邻域内数据点的坐标值,将式(3)分别对系数求导,并使其等于0:(4)  根据(4)式求出拟合方程系数ci,j-i。  求出系数之后,文章求出数据点的平均曲率,二次曲面函数的一阶和二阶微商表示如下:(5)则曲面的平均曲率可由曲面函数的微商表示为(6)  重复以上步骤,求出所有选取点在该邻域内的平均曲率Pi,然后计算出整个点云数据所有点的曲率平均值:(7)  1.2.2曲率精简准则  由微分几何可知,平均曲率是曲面弯曲程度的

8、测量标准,因此可以用平均曲率来作为点云数据的精简准则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。