欢迎来到天天文库
浏览记录
ID:31335649
大小:104.50 KB
页数:4页
时间:2019-01-08
《试论通过设计开放型题培养学生思维能力》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、试论通过设计开放型题培养学生思维能力 摘要:开放型习题是相对有明确条件和明确结论的封闭式习题而言的,是指题目的条件不完备或结论不确定的习题。练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维,培养能力。在教学过程中,除注意增加变式题、综合题外,适当设计一些开放型习题,可以培养学生思维的深刻性和灵活性,克服学生思维的呆板性。 关键词:开放题型;思维;初中数学 中图分类号:G632文献标识码:B文章编号:1002-7661(2013)36-147-01 一、运用不定型开放题,培养学生思维的深
2、刻性 不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。 如:学习“真分数和假分数”时,在学生已基本掌握了真假分数的意义后,问学生:b/a是真分数,还是假分数?因a、b都不是确定的数,所以无法确定b/a是真分数还是假分数。在学生经过紧张的思考和激烈的争论后得出这样的结论:当b 这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的深刻性,提高了
3、全面分析、解决问题的能力。4 二、运用多向型开放题,培养学生思维的广阔性 多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。 如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲队比乙队多修100米,乙队每天修35米,甲队每天修多少米? 这道题从不同的角度思考,得出了不同的解法: 1、先求出乙队20天修的,根据全长和乙队20天修的可以求出甲队20天修的,然后求甲队每天修的。 算式是(1500-35×20)÷2
4、0 2、先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可求出甲队20天修的,然后求甲队每天修的。 算式是:(35×20+100)÷20 3、可以先求出两队平均每天共修多少米,再求甲队每天修多少米。 算式是:1500÷20-35 4、可以先求出甲队每天比乙队多修多少米,再求甲队每天修多少米。 算式是:100÷20+35 然后引导学生比较哪种方法最简便,哪种思路最简捷。 这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不同的解法中找出最简捷的方法,提高学生初步
5、的逻辑思维能力,从而培养学生思维的广阔性和灵活性。 三、运用多余型开放题,培养学生思维品质的批判性4 多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养学生思维的批判性。 四、运用隐藏型开放题,培养学生思维的缜密性 隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯
6、和思维的缜密性。 如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米? 解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:8×5,正确列式应为:8×5×2. 解此类题时要引导学生认真分析题意,找出题中的隐藏条件,使学生养成认真审题的良好习惯,培养学生思维的缜密性。 五、运用缺少型开放题,培养学生思维的灵活性 缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。 如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米? 按常规的思考方法:要
7、求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r,那么正方形的4边长为2r,正方形的面积为(2r)[2]=4r[2]=12,r[2]=3,所以圆的面积是3.14×3=9.42(平方厘米)。 通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。 解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习
8、兴趣,调动学生主动参与的积极性。 参考文献: [1]张水德.开放型数学问题的几种探索方法[J].成才之路.2008(12) [2]覃丽群,李献国.梁泽友.吴世昌.三角形全等的判定SSS》课堂教学实录及评析[J].广西教育.2011(11).
此文档下载收益归作者所有