数据的收集与整理设计

数据的收集与整理设计

ID:31320935

大小:224.50 KB

页数:10页

时间:2019-01-08

数据的收集与整理设计_第1页
数据的收集与整理设计_第2页
数据的收集与整理设计_第3页
数据的收集与整理设计_第4页
数据的收集与整理设计_第5页
资源描述:

《数据的收集与整理设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数据的收集与整理◆【课前热身】1.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,72.我市统计局发布的统计公报显示,2004年到,我市GDP增长率分别为9.6%、10.2%、10.4%、10.6%、10.3%.经济学家评论说,这5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的比较小.A.中位数B.平均数C.众数D.方差3.在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩

2、数据的平均数是()A.9.2B.9.3C.9.4D.9.54.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的标准差是_______.【参考答案】1.D2.D3.D4.0◆【考点聚焦】〖知识点〗平均数、方差、标准差、方差的简化公式〖大纲要求〗了解样本方差、总体方差、样本标准差的意义,理解加权平均数的概念,掌握它的计算公式,会计算样本方差和样本标准差,掌握整理数据的步骤和方法.◆【备考兵法】1.方差的定义在一组数据x1,x2,…,xn中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.通常用“S2”表示,即S2=[(x1-

3、)2+(x2-)2+…+(xn-)2].2.方差的计算(1)基本公式S2=[(x1-)2+(x2-)2+…+(xn-)2](2)简化计算公式(Ⅰ)S2=[(x12+x22+…+xn2)-n2],也可写成S2=(x12+x22+…+xn2)-2,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(Ⅱ)S2=[(x`12+x`22+…+x`n2)-nx`2].当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组数据x`1=x1-a,x`2=x2-a,…x`n=xn-a,那么

4、S2=[(x`12+x`22+…+x`n2)-n`2],也可写成S2=(x`12+x`22+…+x`n2)-`2.记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方.3.标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“S”表示,即S==4.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.〖考查重点与常见题型〗1.考查平均数的求法,有关习题常出现在填空题或选择题中,如:(1)已知

5、一组数据为3,12,4,x,9,5,6,7,8的平均数为7,则x=(2)某校篮球代表队中,5名队员的身高如下(单位:厘米):185,178,184,183,180,则这些队员的平均身高为()(A)183(B)182(C)181(D)1802.考查样本方差、标准差的计算,有关试题常出现在选择题或填空题中,如:(1)数据90,91,92,93的标准差是()(A)2(B)54(C)54(D)52(2)甲、乙两人各射靶5次,已知甲所中环数是8、7、9、7、9,乙所中的环数的平均数x2=8,方差S2乙=0.4,那么,对甲、乙的射击成绩的正确判断是()(A)甲的射击成绩较稳

6、定(B)乙的射击成绩较稳定(C)甲、乙的射击成绩同样稳定(D)甲、乙的射击成绩无法比较◆【考点链接】1.平均数的计算公式___________________________.2.加权平均数公式_____________________________.3.中位数是___________________________,众数是__________________________.4.极差是__________________,方差的计算公式_____________________________.标准差的计算公式:_______________________

7、__.◆【典例精析】例1甲、乙两个学习小组各4名学生的数学测验成绩如下(单位:分)甲组:86828785乙组:85818589(1)分别计算这两组数据的平均数;(2)分别计算这两组数据的方差;(3)哪个学习小组学生的成绩比较整齐?【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【答案】(1)甲=(6+2+7+5)+80=85,乙=(5+1+5+9)+80=85.(2)S甲2=[(86-85)2+(82-85)2+(87-85)2+(85-85)2]=3.5,S乙2=[(85-85)2+(81-85)2+(85-85)2+(89-85)2]=8.(3)∵

8、S乙2>S甲2,∴甲组学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。