欢迎来到天天文库
浏览记录
ID:31284261
大小:104.00 KB
页数:4页
时间:2019-01-08
《论小学数学教学中如何合理的运用数学方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、论小学数学教学中如何合理的运用数学方法 [摘要]数学方法是用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法。而一般性数学方法作为数学方法的一种表现形式,与分类讨论法、数学归纳法等特殊性数学方法相比,它更适用于普遍性、基础性和一般性的数学应用领域,与小学生数学认知生活化、主体化、个性化的特点相符合,因此,我们在小学数学教学中应注重一般性数学方法的教学渗透,为学生有效地获得数学知识、建构数学认知、形成数学思想奠定基础。一般性数学方法的常见类型有合情推理、数学抽象、数学化归、数学模型
2、、数形结合等。 [关键词]小学数学;数学方法;策略 新教材的编排打破了旧教材的体系,着力于学生学习兴趣的培养,以及自立学习能力的培养。而在新教材的教学中同样需关注数学思想方法的应用,因为数学思想在学习和运用数学知识的过程中,起着观念性的指导作用,数学思想产生并作用于数学学习过程中,尤其是在解决复杂的综合题时,数学思想的合理运用更是起着关键性的决定作用。数学方法是数学思想的具体体现,是学习和运用数学知识的工具,因此在教学中很有必要引导学生在解题过程中很好地掌握数学思想方法,并灵活地运用它们,本文就其数学思想方法做浅要
3、论述。 一、数形结合的应用方法4 数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这
4、些都体现了数形结合的思想。把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合
5、又包含平行四边行集合等。对应的思想方法。对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。 二、函数思想方法及极限思想方法的应用 恩格斯说:“4数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的
6、相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数
7、”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。 三、化归思想方法及归纳思想方法的应用4 化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的
8、普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易
此文档下载收益归作者所有