高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版

高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版

ID:31233127

大小:319.00 KB

页数:7页

时间:2019-01-07

高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版_第1页
高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版_第2页
高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版_第3页
高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版_第4页
高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版_第5页
资源描述:

《高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用书文北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。第十二节 导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).1.导数与函数的极值(1)函数的极大值与导数的关系x(a,x0)极大值点x0(x0,b)f′(x)+0-y=f(x)增加极大值减少图示(2)函数的极小值

2、与导数的关系x(a,x0)极小值点x0(x0,b)f′(x)-0+y=f(x)减少极小值增加图示2.求f(x)在[a,b]上的最大(小)值(1)求函数y=f(x)在(a,b)内的极值.(2)将函数y=f(x)的各极值与f(a),f(b)比较,最大的为最大值,最小的为最小值.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形

3、态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。(1)函数的极大值一定比极小值大.(  )(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.(  )(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(  )(4)若实际问题中函数定义域是开区间,则不存在最优解.(  )[答案] (1)× (2)× (3)√ (4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)

4、在(a,b)内的图像如图2121所示,则函数f(x)在开区间(a,b)内极小值点的个数为(  )【导学号:66482113】图2121A.1   B.2   C.3   D.4A [导函数f′(x)的图像与x轴的交点中,左侧图像在x轴下方,右侧图像在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]3.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获取最大年利润的年产量为(  )A.13万件B.11万件C.9万件D.7万件C [y′

5、=-x2+81,令y′=0得x=9或x=-9(舍去).当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0,则当x=9时,y有最大值.即使该生产厂家获取最大年利润的年产量为9万件.] 4.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=(  )A.-4B.-2C.4D.2D [由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f′(x)>0;当-2

6、上为增函数.∴f(x)在x=2处取得极小值,∴a=2.]5.函数y=2x3-2x2在区间[-1,2]上的最大值是________.8 [y′=6x2-4x,令y′=0,对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。得x=0或x=.∵f(-1

7、)=-4,f(0)=0,f=-,f(2)=8,∴最大值为8.]利用导数研究函数的极值问题☞角度1 根据函数图像判断极值 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图2122所示,则下列结论中一定成立的是(  )图2122A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)D [由题图可知,当x<-2时,f′(x)>0;当-2<x<1时

8、,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.] ☞角度2 求函数的极值 求函数f(x)=x-alnx(a∈R)的极值.[解] 由f′(x)=1-=,x>0知:(1)当a≤0时,f′(x)>0,函数f(x)为(0,+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。