高考北京卷(理)_设计

高考北京卷(理)_设计

ID:31229632

大小:704.00 KB

页数:8页

时间:2019-01-07

高考北京卷(理)_设计_第1页
高考北京卷(理)_设计_第2页
高考北京卷(理)_设计_第3页
高考北京卷(理)_设计_第4页
高考北京卷(理)_设计_第5页
资源描述:

《高考北京卷(理)_设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、北京高考理科数学试题第一部分(选择题共40分)一、选择题共8小题。每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。1.已知集合A={-1,0,1},B={x

2、-1≤x<1},则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所

3、示的程序框图,输出的S值为开始是否输出结束A.1B.C.D.5.函数f(x)的图象向右平移1个单位长度,所得图象与y=ex关于y轴对称,则f(x)=A.B.C.D.6.若双曲线的离心率为,则其渐近线方程为A.y=±2xB.y=C.D.7.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于A.B.2C.D.8.设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m的取值范围是A.B.C.D.第二部分(非选择题共110分)二、填空题共6题,每小题5分,共30分.9

4、.在极坐标系中,点(2,)到直线ρsinθ=2的距离等于.10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n项和Sn=.11.如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若PA=3,,则PD=;AB=.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.13.向量a,b,c在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则=.14.如图,在棱长为2的正方体ABCD-A1B1C1D1中,

5、E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程15.(本小题共13分)在△ABC中,a=3,b=2,∠B=2∠A.(I)求cosA的值;(II)求c的值.16.(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X是此人停留期间空

6、气质量优良的天数,求X的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(本小题共14分)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.18.(本小题共13分)设L为曲线C:在点(1,0)处的切线.(I)求L的方程;(II)证明:除切点(1,0)之外,曲线C在直线L的

7、下方.19.(本小题共14分)已知A、B、C是椭圆W:上的三个点,O是坐标原点.(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.20.(本小题共13分)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项,,…的最小值记为Bn,dn=An-Bn。(I)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,),写出d1,d2,d3,d4的值;(II)设d为非负整数,

8、证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;(III)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.参考答案一、选择题:1.B2.D3.A4.C5.D6.B7.C8.C二、填空题:9.110.2,11.;412.9613.414.三.解答题:15.解:(I)因为a=3,b=2,∠B=2∠A.所以在△ABC中,由正弦定理得.所以.故.(II)由(I)知,所以.又因为∠B=2∠A,所以.所以.在△ABC中,.所以.16.解:设表示事件“此

9、人于3月日到达该市”(=1,2,…,13).根据题意,,且.(I)设B为事件“此人到达当日空气重度污染”,则,所以.(II)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=,P(X=2)=P(A1∪A2∪A12∪

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。