高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件

高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件

ID:30977484

大小:14.26 MB

页数:36页

时间:2019-01-05

高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件_第1页
高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件_第2页
高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件_第3页
高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件_第4页
高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件_第5页
资源描述:

《高考数学二轮复习专题七数学思想方法第1讲函数与方程思想数形结合思想课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1讲 函数与方程思想、数形结合思想高考定位函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在选择题、填空题中考查.真题感悟1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题

2、,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动

3、和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是

4、数形的结合.热点一 函数与方程思想的应用[微题型1]不等式问题中的函数(方程)法【例1-1】(1)f(x)=ax3-3x+1对于x∈[-1,1],总有f(x)≥0成立,则a=________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________.且g(x)在区间[-1,0)上单调递增,因此g(x)min=g(-1)=4,从而a≤4,综上a=4.(2)设F(x)=f(x)g(x),由于

5、f(x),g(x)分别是定义在R上的奇函数和偶函数,得F(-x)=f(-x)·g(-x)=-f(x)g(x)=-F(x),即F(x)在R上为奇函数.又当x<0时,F′(x)=f′(x)·g(x)+f(x)g′(x)>0,所以x<0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x>0时,F(x)也是增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).所以,由图可知F(x)<0的解集是(-∞,-3)∪(0,3).答案(1)4(2)(-∞,-3)∪(0,3)探究提高(1)在解决不等式问题时,一种

6、最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f(x)>0或f(x)<0恒成立,一般可转化为f(x)min>0或f(x)max<0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2]数列问题的函数(方程)法(1)解由a1=3,an+1=an+p·3n,得a2=3+3p,a3=a2+9p=3+12p.因为a1,a2+6,a3成等差数列,所以a1+a3=2(a2+6),即3+3+12p=2(3+3p+6),[微题型3]解析几何问题的方程(函数)法【例1-3】设椭圆中心在坐

7、标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.探究提高解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.热点二 数形结合思想的应用[微题型1]利用数形结合思想讨论方程的根或函数零点【例2-1】(1)若函数f(x)=

8、2x-2

9、-b有两个零点,则实数b的取值范围是________.A.5B

10、.6C.7D.8解析(1)由f(x)=

11、2x-2

12、-b有两个零点,可得

13、2x-2

14、=b有两个不等的实根,从而可得函数y=

15、2x-2

16、的图象与函数y=b的图象有两个交点,如图所示.结合函数的图象,可得0<b<2,故填(0,2).答案(1)(0,2)(2)B探究提高用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。