欢迎来到天天文库
浏览记录
ID:309682
大小:1.79 MB
页数:48页
时间:2017-07-21
《基于MATLAB的数字图像预测压缩编码毕业设计论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、摘要毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作者签名: 日 期: 指导教师签名: 日 期: 使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的
2、规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: III摘要学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中
3、以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期:年月日导师签名:日期:年月日III摘要注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文
4、摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范
5、。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它III摘要摘要随着时代的发展,人们可以通过Internet获取大量的信息。这些信息中包含着大量的图像信息,它们占据了很大的数据量,这给信息的存储和传输带来了极大的挑战。图像压缩的目的就是用尽量少的字节来表示图像,并且要求重建图像具有较好的质量。利用图像压
6、缩,可以减轻图像存储和传输的负担,使得图像在网络上实现快速传输和实时处理成为现实。通常,图像中局部区域的像素是高度相关的,因此可以利用先前像素的有关知识来对当前像素的灰度值进行估计,这就是预测。本文介绍了数字图像的预测压缩编码。首先,将图像分成8×8大小的像素块。接着,对每一像素块均采用AR模型,利用Burg算法确定最佳线性预测系数。然后,通过线性差分方程计算得到预测值,最后对实际像素值和预测值之间的差值量化后进行算术编码。从而实现数字图像的预测压缩编码。本文采用MATLAB提供的图形用户界面工具对三幅典型的标准灰度图像进行了预测压缩编码仿真,
7、并用客观标准和主观标准综合评价重建图像的质量。仿真结果表明:重建图像与原始图像几乎没有任何差异,能够满足人们的视觉需求。另外,数据压缩比较高且峰值信噪比均在20dB-40dB之间。因此,采用MATLAB实现数字图像的预测压缩编码是一种较好的压缩编码方法,能够在实际中得到广泛的应用。关键词:图像压缩,线性预测,算术编码,MATLAB,图形用户界面IIIAbstractAbstractPeoplecanobtainagreatamountofinformationfromtheInternetwiththedevelopmentoftimesand
8、itincludesagreatamountofimageinformation.Theimageinformationoccupieshugedat
此文档下载收益归作者所有