欢迎来到天天文库
浏览记录
ID:30936223
大小:176.50 KB
页数:13页
时间:2019-01-05
《高考数学大一轮复习 高考专题突破三 高考中的数列问题试题 理 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺高考专题突破三高考中的数列问题试题理北师大版1.(2016·广州模拟)数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}中连续的三项,则数列{bn}的公比为( )A.B.4C.2D.答案 C解析 设数列{an}的公差为d(d≠0),由a=a1a7,得(a1+2d)2=a1(a1+6d),解得a1=2d,故数列{bn}的公比q====2.2.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前1
2、00项和为( )A.B.C.D.答案 A解析 设等差数列{an}的首项为a1,公差为d.∵a5=5,S5=15,∴∴∴an=a1+(n-1)d=n.∴==-,∴数列的前100项和为++…+=1-=.3.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则等比数列{an}的公比为________.答案 解析 设等比数列{an}的公比为q(q≠0),由4S2=S1+3S3,认真组织会员学习,及时将党的路线、方针、政策,及时将新的法律和规章,传达到会员,协会编印了《会员之家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私
3、营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺得4(a1+a1q)=a1+3(a1+a1q+a1q2),即3q2-q=0,又q≠0,∴q=.4.(2015·课标全国Ⅱ)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.答案 -解析 由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,因为Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,所以=-1-(n-1)=-n,所以Sn=-.5.已知数列{an}的前n项和为Sn,对任意n∈N+都有Sn
4、=an-,若15、家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺+1,其中q>0,n∈N+.(1)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(2)设双曲线x2-=1的离心率为en,且e2=2,求e+e+…+e.解 (1)由已知,Sn+1=qSn+1,得Sn+2=qSn+1+1,两式相减得an+2=qan+1,n≥1.又由S2=qS1+1得a2=qa1,故an+1=qan对所有n≥1都成立.所以,数列{an}是首项为1,公比为q的等比数列.从而an=qn-1.由6、a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2.所以an=2n-1(n∈N+).(2)由(1)可知,an=qn-1,所以双曲线x2-=1的离心率en==.由e2==2,解得q=,所以e+e+…+e=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中7、,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的. 已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N+),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设Tn=Sn-(n∈N+),求数列{Tn}的最大项的值与最小项的值.解 (1)设等比数列{an}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,认真组织会员学习,
5、家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺+1,其中q>0,n∈N+.(1)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(2)设双曲线x2-=1的离心率为en,且e2=2,求e+e+…+e.解 (1)由已知,Sn+1=qSn+1,得Sn+2=qSn+1+1,两式相减得an+2=qan+1,n≥1.又由S2=qS1+1得a2=qa1,故an+1=qan对所有n≥1都成立.所以,数列{an}是首项为1,公比为q的等比数列.从而an=qn-1.由
6、a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2.所以an=2n-1(n∈N+).(2)由(1)可知,an=qn-1,所以双曲线x2-=1的离心率en==.由e2==2,解得q=,所以e+e+…+e=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中
7、,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的. 已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N+),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设Tn=Sn-(n∈N+),求数列{Tn}的最大项的值与最小项的值.解 (1)设等比数列{an}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,认真组织会员学习,
此文档下载收益归作者所有