欢迎来到天天文库
浏览记录
ID:30935356
大小:154.50 KB
页数:13页
时间:2019-01-04
《高考数学大一轮复习 高考专题突破三 高考中的数列问题 文 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2018版高考数学大一轮复习高考专题突破三高考中的数列问题文新人教版1.(2017·广州质检)数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}中连续的三项,则数列{bn}的公比为( )A.B.4C.2D.答案 C解析 设数列{an}的公差为d(d≠0),由a=a1a7,得(a1+2d)2=a1(a1+6d),解得a1=2d,故数列{bn}的公比q====2.2.已知等差数列{an}的前n项和为Sn,a5=5,
2、S5=15,则数列的前100项和为( )A.B.C.D.答案 A解析 设等差数列{an}的首项为a1,公差为d.∵a5=5,S5=15,∴∴∴an=a1+(n-1)d=n.∴==-,∴数列的前100项和为++…+=1-=.3.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),Sn是数列{an}的前n项和,则S2016等于( )A.22016-1B.3×21008-3C.3×21008-1D.3×22016-2答案 B解析 依题意得an·an+1=2n,an+1·an+2=2n+1,于是有=2,政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特
3、色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线即=2,数列a1,a3,a5,…,a2n-1,…是以a1=1为首项,2为公比的等比数列;数列a2,a4,a6,…,a2n,…是以a2=2为首项,2为公比的等比数列,于是有S2016=(a1+a3+a5+…+a2015)+(a2+a4+a6+…+a2016)=+=3×21008-3,故选B.4.(2015·课标全国Ⅱ)设Sn是数列{an}的前
4、n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.答案 -解析 由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,因为Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,所以=-1-(n-1)=-n,所以Sn=-.5.已知数列{an}的前n项和为Sn,对任意n∈N*都有Sn=an-,若15、,∴{an}是以-1为首项,以-2为公比的等比数列,∴an=-(-2)n-1,∴Sk=,由16、1,其中q>0,n∈N*.(1)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(2)设双曲线x2-=1的离心率为en,且e2=2,求e+e+…+e.解 (1)由已知,Sn+1=qSn+1,得Sn+2=qSn+1+1,两式相减得an+2=qan+1,n≥1.又由S2=qS1+1得a2=qa1,故an+1=qan对所有n≥1都成立.所以,数列{an}是首项为1,公比为q的等比数列.从而an=qn-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2.所以an=2n-1(n∈N*).(2)由(1)可知,an=qn7、-1,所以双曲线x2-=1的离心率en==.由e2==2,解得q=,所以e+e+…+e=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响
5、,∴{an}是以-1为首项,以-2为公比的等比数列,∴an=-(-2)n-1,∴Sk=,由16、1,其中q>0,n∈N*.(1)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(2)设双曲线x2-=1的离心率为en,且e2=2,求e+e+…+e.解 (1)由已知,Sn+1=qSn+1,得Sn+2=qSn+1+1,两式相减得an+2=qan+1,n≥1.又由S2=qS1+1得a2=qa1,故an+1=qan对所有n≥1都成立.所以,数列{an}是首项为1,公比为q的等比数列.从而an=qn-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2.所以an=2n-1(n∈N*).(2)由(1)可知,an=qn7、-1,所以双曲线x2-=1的离心率en==.由e2==2,解得q=,所以e+e+…+e=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响
6、1,其中q>0,n∈N*.(1)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(2)设双曲线x2-=1的离心率为en,且e2=2,求e+e+…+e.解 (1)由已知,Sn+1=qSn+1,得Sn+2=qSn+1+1,两式相减得an+2=qan+1,n≥1.又由S2=qS1+1得a2=qa1,故an+1=qan对所有n≥1都成立.所以,数列{an}是首项为1,公比为q的等比数列.从而an=qn-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2.所以an=2n-1(n∈N*).(2)由(1)可知,an=qn
7、-1,所以双曲线x2-=1的离心率en==.由e2==2,解得q=,所以e+e+…+e=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响
此文档下载收益归作者所有