8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质

8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质

ID:30893557

大小:406.00 KB

页数:16页

时间:2019-01-03

8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质_第1页
8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质_第2页
8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质_第3页
8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质_第4页
8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质_第5页
资源描述:

《8版高中数学(人教a版)必修3同步教师用书:第3章3..3概率的基本性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.3 概率的基本性质1.了解事件间的包含关系和相等关系.2.理解互斥事件和对立事件的概念及关系.(重点、易错易混点)3.了解两个互斥事件的概率加法公式.(难点)[基础·初探]教材整理1 事件的关系与运算阅读教材P119~P120“探究”以上的部分,完成下列问题.定义表示法图示事件的关系包含关系一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)事件互斥若A∩B为不可能事件,则称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生若A∩B

2、=∅,则A与B互斥事件对立若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件若A∩B=∅,且A∪B=U,则A与B对立事件的运算并事件若某事件发生当且仅当事件A或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)同时抛掷两枚硬币,向上面都是正面为事件M,向上面至少有一枚是正面为事件N,则有(  )A.M⊆N  B.M⊇N  C.M=N  D.M<N【解析】 事件N包含两种结

3、果:向上面都是正面或向上面是一正一反.则当M发生时,事件N一定发生,则有M⊆N.故选A.【答案】 A教材整理2 概率的性质阅读教材P120“探究”以下的部分,完成下列问题.1.概率的取值范围为[0,1].2.必然事件的概率为1,不可能事件的概率为0.3.概率加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).特例:若A与B为对立事件,则P(A)=1-P(B),P(A∪B)=1,P(A∩B)=0.4.概率的加法公式的含义(1)使用条件:A,B互斥.(2)推广:若事件A1,A2,…,An彼此互斥,则P(A1+A2+

4、…+An)=P(A1)+P(A2)+…+P(An).(3)在求某些复杂的事件的概率时,可将其分解为一些概率较易求的彼此互斥的事件,化整为零,化难为易.1.判断(正确的打“√”,错误的打“×”)(1)互斥事件一定对立.(  )(2)对立事件一定互斥.(  )(3)互斥事件不一定对立.(  )(4)事件A与B的和事件的概率一定大于事件A的概率.(  )(5)事件A与B互斥,则有P(A)=1-P(B).(  )(6)若P(A)+P(B)=1,则事件A与事件B一定是对立事件.(  )【答案】 (1)× (2)√ (3)√ (4)× (5

5、)× (6)×2.P(A)=0.1,P(B)=0.2,则P(A∪B)等于(  )A.0.3       B.0.2C.0.1D.不确定【解析】 由于不能确定A与B互斥,则P(A∪B)的值不能确定.【答案】 D3.一商店有奖促销活动中有一等奖与二等奖两个奖项,其中中一等奖的概率为0.1,中二等奖的概率为0.25,则不中奖的概率为________.【解析】 中奖的概率为0.1+0.25=0.35,中奖与不中奖互为对立事件,所以不中奖的概率为1-0.35=0.65.【答案】 0.65[小组合作型]互斥事件与对立事件的判定 (1)抽查1

6、0件产品,设事件A:至少有两件次品,则A的对立事件为(  )A.至多两件次品    B.至多一件次品C.至多两件正品D.至少两件正品(2)把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是(  )A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对【精彩点拨】 根据互斥事件及对立事件的定义判断.【尝试解答】 (1)“至少有两件次品”的否定是“至多有一件次品”,故选B.(2)“甲分得红牌”与“乙分得红牌”不会同时发生,但分得红牌的还可能是丙或丁,所以不是对立

7、事件.故选C.【答案】 (1)B (2)C判断互斥事件和对立事件时,主要用定义来判断.当两个事件不能同时发生时,这两个事件是互斥事件;当两个事件不能同时发生且必有一个发生时,这两个事件是对立事件.[再练一题]1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件:(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有一名男生”与“至少有一名女生”.【解】 从3名男生和2名女生中

8、任选2人有如下三种结果:2名男生,2名女生,1男1女.(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少1名男生”包括2名男生和1男1女两种结果,与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。