资源描述:
《高考数学大一轮复习 第五章 平面向量 5_2 平面向量基本定理及坐标表示教师用书 文 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2018版高考数学大一轮复习第五章平面向量5.2平面向量基本定理及坐标表示教师用书文北师大版1.平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,存在唯一一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1、e2叫作表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(
2、x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),
3、a
4、=.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),
5、
6、=.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a∥b⇔x1y2-x2y1=0.【知识拓展】1.若a与b不共线,λa+μb=0,则λ=μ=0.2.设a=(x1,y1),b=(x2,y2),如果x2≠0,y2≠0,则a∥b⇔=.【思考辨析】判断下列结论是否正确(请在括号中打
7、“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线(4)
8、若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成=.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e1,e2是平面内一组基底,那么( )A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间内任一向量a可以表示为a=λ1e1+λ2e2(λ1,λ2为实数)C.对实数λ1,λ2,λ1e1+λ2e2不一定在该平面内D.对平面内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案 A2.(教材改编)已知a1+a2+…+an=0,且an=(3,4),则a1+a2+…+
9、an-1的坐标为( )A.(4,3)B.(-4,-3)C.(-3,-4)D.(-3,4)答案 C解析 a1+a2+…+an-1=-an=(-3,-4).3.(2015·课标全国Ⅰ)已知点A(0,1),B(3,2),向量=(-4,-3),则向量等于( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案 A解析 =(3,1),=(-4,-3),=-=(-4,-3)-(3,1)=(-7,-4).4.已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=________.答案 -解析 由已知条件可得ma+nb=(2
10、m,3m)+(-n,2n)=(2m-n,3m+2n),a-2b=(2,3)-(-2,4)=(4,-1).∵ma+nb与a-2b共线,∴=,即n-2m=12m+8n,∴=-.5.(教材改编)已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.答案 (1,5)解析 设D(x,y),则由=,得(4,1)=(5-x,6-y),政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相
11、互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线即解得题型一 平面向量基本定理的应用例1 在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=a,=b,则等于( )A.a+bB.a+bC.a+bD.a+b答案 C解析 ∵=a,=b,∴=+=+=a+b.∵E是OD的中点,∴=,∴DF=AB.∴==(-)=×[--(-)]=-=a-b,∴=+=a+b+a-b=a+b,故选C.思维升华 平面向量基本定理应用的实质和一般思路政德才能立得稳、立得牢。要深入学习
12、贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲