欢迎来到天天文库
浏览记录
ID:30841279
大小:502.50 KB
页数:19页
时间:2019-01-03
《4山东省烟台市中考数学试卷答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2014年山东省烟台市中考数学试卷试题解析 一、选择题(本题共12小题,每小题3分,满分36分)【考点】中心对称图形;轴对称图形.菁优网版权所有【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形
2、不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D. 3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为( ) A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×1
3、0n的形式,其中1≤
4、a
5、<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A. 4.如图是一个正方体截去一角后得到的几何体,它的主视图是( ) A.B.C.D.【考点】简单组合体的三视图;截一个几何体.菁优网版权所有【分析】根据主视图是从正面看到的图形判定则可.【详解】解:从正面看,主视图为.故选:C.5.按如图的运算
6、程序,能使输出结果为3的x,y的值是( ) A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值.菁优网版权所有【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【详解】解:由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x=﹣4时,y=﹣11,故本选项错误;D、x=﹣3时,y=﹣9,故本选项正确.故选D.6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,
7、MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( ) A.28°B.52°C.62°D.72°【考点】菱形的性质;全等三角形的判定与性质.菁优网版权所有【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴
8、∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为( ) A.1.5B.3C.3.5D.4.5【考点】等腰梯形的性质;梯形中位线定理.菁优网版权所有【分析】根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据
9、三角形的中位线,可得答案.【详解】解:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B. 8.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( ) A.﹣1或5B.1C.5D.﹣1【考点】根与系数的关系.菁优网版权所有【分析】
10、设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.【详解】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=
此文档下载收益归作者所有