直接证明综合法与分析法

直接证明综合法与分析法

ID:30822057

大小:361.00 KB

页数:8页

时间:2019-01-04

直接证明综合法与分析法_第1页
直接证明综合法与分析法_第2页
直接证明综合法与分析法_第3页
直接证明综合法与分析法_第4页
直接证明综合法与分析法_第5页
资源描述:

《直接证明综合法与分析法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.1直接证明--综合法与分析法1.教学目标:知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。2.教学重点:了解分析法和综合法的思考过程、特点3.教学难点:分析法和综合法的思考过程、特点4.教具准备:与教材内容相关的资料。5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常

2、用方法。6.教学过程:学生探究过程:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------直接证明与间接证明。若要证明下列问题:已知a,b>0,求证教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。学生活动:充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义证明:因为,所以,因为,所以.因此,.P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论1.综合法综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式

3、的性质推导出所要证明的不等式成立,这种证明方法叫做综合法用综合法证明不等式的逻辑关系是:综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法例1、在△ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证△ABC为等边三角形.分析:将A,B,C成等差数列,转化为符号语言就是2B=A+C;A,B,C为△ABC的内角,这是一个隐含条件,明确表示出来是A+B+C=;a,b,c成等比数列,转化为符号语言就是.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦

4、定理正好满足要求.于是,可以用余弦定理为工具进行证明.证明:由A,B,C成等差数列,有2B=A+C.①因为A,B,C为△ABC的内角,所以A+B+C=.⑧由①②,得B=.由a,b,c成等比数列,有.由余弦定理及③,可得.再由④,得.,因此.从而A=C.由②③⑤,得A=B=C=.所以△ABC为等边三角形.解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.例2、已知求证本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比较法:注意到要证的不等式关于对称,不妨设,从而原

5、不等式得证。2)商值比较法:设故原不等式得证。注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。讨论:若题设中去掉这一限制条件,要求证的结论如何变换?2.分析法证明数学命题时,还经常从要证的结论Q出发,反推回去,寻求保证Q成立的条件,明尸2成立,再去寻求尸2成立的充分条件尸3件、定理、定义、公理等)为止.乞,再去寻求尸1成立的充分条件尸2;为了证……直到找到一个明显成立的条件(已知条即使Q成立的充分条件尸1.为了证明尸1成立,分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不

6、等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法叫做分析法用分析法证明不等式的逻辑关系是:分析法的思维特点是:执果索因分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……这只需要证明命题为真,从而又有…………这只需要证明命题A为真而已知A为真,故命题B必为真例3、求证证明:因为都是正数,所以为了证明只需证明展开得即因为成立,所以成立即证明了说明:①分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明

7、命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真而已知A为真,故B必真在本例中,如果我们从“21<25”出发,逐步倒推回去,就可以用综合法证出结论。但由于我们很难想到从“21<25”入手,所以用综合法比较困难。事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据条件的结构特点去转化结论,得到中间结论Q‘;根据结论的结构特点去转化条件,得到中间结论P‘.若由P‘可以推出Q‘成立,就可以证明结论成立.下面来看一个例子.例4已知,且①②求证:。分析:比较已知条件和结论,发现结论中没有出现角,因此第

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。