资源描述:
《2013年北京市春季普通高中会考(新课程)数学试卷》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2013年北京市春季普通高中会考(新课程)数学试卷第一部分选择题(每小题3分,共60分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1.如果集合//={-!,2},B={xx>0}f那么集合A^B等于()(A)0(B){-1}2.不等式x2-2x<0的解集为()(A){xlx>2}(B){xlx<0}3.已知向量4=(-2,3),b=(1,5),那么a(A)-13(B)-7(C){2}(D){-1,2}(C){xl02}b等于()(C)7(D)134.如果直线y=3兀与肓线y=-mx+i平行,那么加的值为()(D)3(A)-3(
2、B)4(c)i5.如果<7>0,那么a+—1的最小值是()(A)2(B)3(C)4(D)5TT6.要得到函数尹=2sin(兀+—)的图象,6只要将函数j^=2sinx的图象()7T(A)向左平移一个单位6IT(B)向右平移一个单位6(C)向左平移匹个单位TT(D)向右平移上个单位337.在等差数列{①}中,已知q=1,=25,那么@等于()(A)9(B)8(C)7(D)68.在函数y=cosxfy=x3,y-ev,y=中,奇函数是()(A)y=cosx(B)y=x3(C)y=eY(D)y=x1tc…9.cos的值为()6(A)V2(B)V2(C)—(D)V3222210.
3、断数^=sin2x+cos2x(xgR)的最小正周期是()(A)-211・已知函数/(X)=67V(6/>0,671)在区间[0,1]上最人值是2,那么Q等于()(B)兀(C)2兀(D)4兀(A)-(B)-(C)2(D)44212.在ABC中,厶二=60°,AC=2羽,BC=3近,则角B等于()(A)45°(B)30。或60。(C)135°(D)45。或135。13.口袋中装有4个大小、材质完金相同的小球,球的颜色分别是红色、黄色、蓝色和白色,从口袋屮随机摸出2个小球,摸到红色小球和白色小球的概率是()111?(A)—(B)—(0)—(D)—632314.为了解决某学校门前公
4、路的交通状况,从行驶过的汽车中随机抽取200辆进行统计分析,绘制出关于它们午速的频率分布直方图(如图所示),那么午速在[60,70)区间的汽车人约有()(A)20辆(B)40辆(C)60辆(D)80辆频率15.已知平面Q、0,直线q、b,下面的四个命题_a//b①宀=>b丄a;②。丄"aua}=>a//b:③bua丄b;④所有正确命a//p题的序号是((A)①②)(B)②③(C)①④(D)②④16.当xj满足条件{尹》0,吋,H标函数z=x+3p的最大值是()2x+y—350(A)1(B)1.5(C)4(D)917.针对2020年全面建成小康社会的宏伟H标,十八大报告中首次提出
5、“实现国内生产总值和城乡居民人均收入比2010年翻一番”的新指标.按照这一指标,城乡居民人均收入在这十年间平均增长率x应满足的关系式是()(A)l+10x=2(B)10(l+x)=2(C)(l+x),0=2(D)l+£°=218.•个空间儿何体的三视图如右图所示,该儿何体的体积为((A)12(B)18(C)24正(主)视图侧(左)视图(D)3619.俯视图将长度为1米的绳任意剪成两段,其小一段的长度小于0.4米的概率是()(A)1(B)0.8(C)0.6(D)0.520.记时钟的时针、分针分别为OA、OB(O为两针的旋转中心).从12点整开始计时,经过加分钟,刃•丙的值笫一次达
6、到最小时,那么加的值是((A)30⑻型11(C)31(D)2兀TT第二部分非选择题(共40分)一、填空题(共4个小题,每小题3分,共12分)21.计算(-)-1+log31的结果为222.已知圆C:(兀一1)2+(尹+1)2=1,那么圆心C到处标原点O的距离是23.某程序根图如下图所示,该程序运行后输岀的S的值为24.已知数列{勺}是公差为d的等差数列,且各项均为正整数,如果舛=1,an=16,那么n+d的最小值为•二、解答题(共4个小题,共28分)23.(本小题满分7分)如图,在正方体ABCD—出BCQ中,E是棱CG的中点.(I)证明:AC.//平面BDE;26•(木小题满
7、分7分)(II)证明:4C、丄BD・jr71在平面直角坐标系xO中,角Q,0(OVQV—,—V0V7T)的顶点与原点O重合,始边与X轴22的正半轴重合,终边分别与单位圆交于两点,力,〃两点的纵坐标分别为丄,°・1(I)求tan/?的值;(II)求MOB的面积.27.(本小题满分7分)已知圆C:疋+尹2=5加2(加>0),直线/过点M(-m,0)n与圆C相交于4B两点.(I)如果直线/的斜率为1,且1/81=6,求加的值;(II)设直线/与_y轴交于点P,如果I刃1=21页I,求直线/的斜率.