dota游戏中人工智能的设计与实现

dota游戏中人工智能的设计与实现

ID:30619252

大小:17.19 KB

页数:4页

时间:2019-01-01

dota游戏中人工智能的设计与实现_第1页
dota游戏中人工智能的设计与实现_第2页
dota游戏中人工智能的设计与实现_第3页
dota游戏中人工智能的设计与实现_第4页
资源描述:

《dota游戏中人工智能的设计与实现》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果DOTA游戏中人工智能的设计与实现  引言  DOTA游戏以及所有的即时战略游戏中,人工智能是不可或缺的一大工具。新手玩家通过对AI的对战初步了解整个游戏的规则、战斗方式、英雄特性等。在非联网的情况下,AI也是玩家的唯一对手。  传统AI:战斗模式单一,反应速度缓慢,行动指令呆板,无法较好的分析战场形势与战斗情况。水平低,容易被玩家识别出设计好的指令,从而导致轻易击杀

2、,影响游戏的娱乐性。  创新AI:模拟人类思维,有了较高的智商的。新手玩家能够通过与AI的对战,逐渐学会游戏的玩法,提升对游戏的认识,而并不像以前的直接与人类对抗导致被高端玩家蹂躏。  此外,创新型AI不只面向新手玩家,基于AI具有水平高、套路广、懂得随机应变等特点,同时能够使得高水平玩家从与AI的对战也能获得乐趣,进一步提升用户体验。  算法核心功能课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一

3、定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果  AI的核心功能包括控制中心、巡查系统和指令中心。巡查系统好比AI的眼睛和大脑,AI通过巡查系统来获取游戏数据并且分析这些数据;巡查系统分析的结果传达给指令中心,经过指令中心处理后转化成指令信号传达给控制中心;控制中心将信号转化为AI的具体行为[1]。具体功能如下:  核心功能实现  巡查系统  设一个角色当前生命值为H、攻击力为A、防御力为D、魔法值为M,四个技能分别为A1、A2、A3、A4且对应的四

4、个技能强度分别为P1、P2、P3、P4、技能的冷却程度为C1、C2、C3、C4。  若对于任意一个技能An得知其剩余冷却时间为Yn、冷却的总时间为Zn,则必然存在线性函数fn使得技能冷却程度Cn为:联盟  Cn=fn,Cn∈[0,1]  计算技能冷却程度在高端游戏局中对技能冷却的掌握程度很大程度上体现了一个玩家游戏水平,当技能冷却程度约为0时代表这个技能刚刚进入冷却时间,对于一些靠技能为主的英雄代表丧失战斗力;当技能冷却程度即将到达1时,英雄即将恢复战斗力且在其等于1时瞬间恢复大量战斗力。而这个恢复

5、的过程往往是出乎意料的。在这个恢复战斗力过程即是考验玩家技术含量的过程,如撤退、普通攻击、走位或衔接其他策略方案等[2]。  则对于任意技能An技能强度Pn与冷却程度Cn和其他参数X的对应关系如下所示:  Pn=fc课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果  自我学习功能  AI的自我学习使得AI

6、在实际战斗中能够不断地提升自己的水平。为了实现这一块功能,我们一改传统直接给AI编程固定的套路,让AI知道自己有何种技能、属性,并且告诉AI各种行为将会产生的结果,让AI自己计算当前情况下最有效的套路,这样的设计让AI在复杂的实际游戏战斗中能够有出色的表现[3]。  指令中心  指令中心是将信号转化为实际行动的系统功能模块。  比如指令中心接受到控制中心传来的一个“ATTACK”指令,那么指令中心将对英雄下达攻击指令,并反馈给控制中心此次指令的结果,如英雄被击晕了,那么此次指令必将是执行不了的,那么

7、将反馈给控制中心一个被击晕的信号,控制中心立马重新计算应对措施。  控制中心  各个子系统通过控制中心连接成一个完整的AI系统,控制中心接受各个子功能的数据和分析结果,然后向指令中心发布指令。课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果  例如在实际战斗中,一个具有控制技能的高爆发法师,首先他看见他的

8、正前方有一名敌人,通过知己知彼系统,AI得知目标敌人的战斗力比自己低,可以击杀。接着AI开始思考击杀策略,通过自我学习系统,AI计算出了最优方案:先通过走位靠近目标敌人,然后试用控制技能将其制服,在控制技能期间AI对目标敌人进行普通攻击,当控制技能快要结束时AI放出大招将其击杀。知己知彼、自我学习系统计算出的结果传达给控制中心,控制中心对指令中心发布指令,于是AI就行动了起来。  3.结论  人工智能的设计与开发进一步完善了传统AI在DOTA等即时战略游戏中的不足,从

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。