欢迎来到天天文库
浏览记录
ID:30466648
大小:18.72 KB
页数:6页
时间:2018-12-30
《钛基复合材料应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划钛基复合材料应用 钛 基 复 合 材 料 的 应 用 级金属班 刘超凡 0 钛基复合材料的应用 在现有的基础上提高高温钛合金的使用温度存在着较大的困难,难以满足日益苛刻的综合性能要求。于是,钛合金向钛材料的新一族——钛基复合材料(TMCs)发展的转移趋势也应运而生。近年来,由于其相对钛合金更为优异的综合性能,钛基复合材料引起人们广泛关注。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业
2、的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 目前,钛基复合材料最重要、最有潜力的应用领域之一是在航空航天结构材料以及航空航天发动机材料。为提高高温钛合金的性能及使用温度,钛基复合材料应该具有高比强度、高比模量,更为重要的是,应在高温条件下有高的强度、优异的抗蠕变性能、可靠的热稳定性、抗氧化性以及高的疲劳强度。为争夺钛材料的技术和市场优势,世界各国纷纷开始进行了钛合金复合材料的开发研究。钛基复合材料是指在钛或钛合金基体中植入刚硬陶瓷增强体的一种复合材料。它把金属的延展性、韧性与陶瓷的高强度、高模量结合起来,从而
3、获得了更高的剪切强度和压缩强度以及更好的高温力学性能。TMCs极具吸引力的物理性能和力学性能,诸如高模量、高强度、抗氧化,已经许多研究证明。 钛基复合材料的研究开始于70年代,在80年代中期,美国航天飞机和整体高性能涡轮发动机技术(IHPTET)以及欧洲、日本的同类发展计划的实施推动了钛基复合材料的发展。例如美国Dynamet技术公司开发的CermeTi系列TiC/Ti-6Al-4V复合材料,用作半球形火箭壳、导弹尾翼和飞机发动机零件。日本丰田公司利用粉末冶金法制备了TiB短纤维增强Ti-7Mo-4Fe-2Al-2V复合材料,成功应用在丰田引擎中,作为进气、出气阀的材料。在航天航空、军用
4、和民用领域获得实际应用,体现出研究和开发钛基复合材料的重要价值。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 钛基复合材料主要分为两大类:连续纤维增强钛基复合材料和颗粒增强钛基复合材料。早期研究的主要领域是以碳化硅纤维增强的钛基复合材料,可显著提高基体合金的机械性能,但纤维增强钛基复合材料受到以下几个因素的制约:碳化硅纤维价格昂贵、加工工艺复杂、各向异性。此外,钛基复合材料中SiC纤维与钛基体热膨
5、胀系数相差较大,容易在制备和服役过程中产生较大的热应力,且在高温条件下与钛基体发生界面反应而生成TiCx、Ti5Si3(C)等产物,严重影响复合材料的性能。上述几个因素严重地限制了连续纤维增强钛基复合材料的应 用。 最近,以外加或原位生成的非连续增强钛基复合材料因其制备和加工工艺与钛合金相似,成本与钛合金材料接近,可望在航空航天和军工领域的许多高温结构中获得实际应用。低密度、高模量和高强度的陶瓷颗粒或短纤维加入钛合金基体中,可显著提高材料的比模量、比强度和蠕变性能,进一步提高它的使用温度,以满足高温钛合金不断发展的需要。因此,非连续增强钛基复合材料是目前的重要研究方向。此外,陶瓷增强相
6、可显著提高基体合金的耐磨性,结合钛合金耐腐蚀的优点,满足航空航天和军工领域对材料耐磨、耐蚀的要求。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 近年来,TMCs的发展虽然很快,但仍是一种新型昂贵的材料并尚处于发展之中,尤其是冷战结束以后,由于缺乏对宇航、军事项目长期巨额资金的支持,使TMCs的研究与发展开始降温,其目标转向工程应用,发展低成本颗粒增强的钦基复合材料成为当今一种重要趋势。 不连续纤
7、维钛基增强复合材料形变与断裂 复合材料与基体合金的蠕变应力指数和激活能是一致的,这意味着复合材料蠕变机制与基体合金是相同的在低应力阶段,激活能与Ti的自扩散激活能相近,应力指数与错位攀移控制蠕变应力指数一致,错位结构也是典型的,形成了胞状结构,因此可以肯定,在低应力阶(来自:写论文网:钛基复合材料应用)段,复合材料与基体合金一样,蠕变由错位攀移速率控制。从金相观察发现在高应力阶段,界面空洞较多,因此,可以认为界面损失是
此文档下载收益归作者所有