纤维增强陶瓷基复合材料

纤维增强陶瓷基复合材料

ID:30354074

大小:25.77 KB

页数:19页

时间:2018-12-29

上传者:U-5097
纤维增强陶瓷基复合材料_第1页
纤维增强陶瓷基复合材料_第2页
纤维增强陶瓷基复合材料_第3页
纤维增强陶瓷基复合材料_第4页
纤维增强陶瓷基复合材料_第5页
资源描述:

《纤维增强陶瓷基复合材料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划纤维增强陶瓷基复合材料  题目:  碳纤维增强陶瓷基复合材料抗氧化研究  学生:  学号:  院:材料科学与工程学院  专业:无机非金属材料工程  指导教师:  XX年05月22日  碳纤维增强陶瓷基复合材料抗氧化研究  摘要:碳纤维增强陶瓷基复合材料(CFRCMCs)具有良好的高温力学性能和热性能,是航空航天领域非常理想的热结构材料.但CFRCMCs中的碳纤维极易发生氧化,因此CFRCMCs的氧化防护问题一直是CFRCMCs研究的热点。文章对碳纤维改性、基体抗氧化技术、界面层抗氧化技术和表面涂层技术这四种CFRCMCs的抗氧化技术及其原理进行了评述,分析了各类抗氧化技术的特点并对其发展趋势进行了展望.  关键词:碳纤维;陶瓷基复合材料;抗氧化涂层,氧化保护  1前言目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  碳纤维增强陶瓷基复合材料由于具有高比强度、高比模量、耐腐蚀、耐高温、低密度等优良特性,特别是拥有良好的高温力学性能和热性能,在惰性环境中超过XXe仍能保持强度、模量等力学性能不降低,拥有良好的断裂韧性和耐磨性能、低线膨胀系数、高热导率、高气化温度和良好的抗热震性能【1】,成为航空航天领域非常理想的热结构材料。但是,在氧化气氛下,碳纤维增强陶瓷基复合材料中碳质材料在400℃左右发生氧化,使其优异性能难以在高温下长时间保持。而碳纤维增强陶瓷基复合材料的许多应用环境都是具有氧化气氛的。因此,它们在氧化气氛中的表现及氧化气氛中的氧化保护一直是科研工作者非常关注的问题【2】。碳纤维增强陶瓷基复合材料的抗氧化性研究主要集中在两个方面:(1)通过对基体材料的处理来增强材料的抗氧化性能,如殷小玮等通过在基体孔隙中渗入融熔Si和Cr反应生成Cr3Si来增强抗氧化性能;??re等通过在碳纤维表层形成B化合物膜层来增强材料抗氧化性能;(2)通过整体抗氧化涂层增强材料的抗氧化性能。在两种处理方式中,整体抗氧化涂层更为有效。本文仅对整体抗氧化涂层的发展进行综述和展望。【3】  2抗氧化涂层的要求目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  抗氧化涂层的基本功能是将基体材料与外部的氧化性气氛隔离。要有效地实现其隔离功能,抗氧化涂层体系必须满足一些基本要求:(1)涂层材料在所保护温度围稳定,涂层体系和基体材料有良好的粘接作用,涂层与基体及涂层与涂层之间  不剥落(分离);(2)涂层材料与基体间有相近的线膨胀系数(CTE);(3)涂层材料氧和碳的扩散系数低;(4)涂层材料与基体间有好的化学和物理相容性;(5)作为结构部件使用通常会受热流的冲蚀,在这种环境中使用涂层材料必须有良好的抗(转载于:写论文网:纤维增强陶瓷基复合材料)冲蚀性能等等【4】。  3抗氧化涂层的材料组成  抗冲蚀层材料  抗冲蚀层的功能是阻挡氧气进入材料内部,抵抗气流冲蚀。抗冲蚀层的材料最常用的是SiC和Si3N4。SiC没有熔点,在2100e由B相转变为A相,在(2830?40)e分解;Si3N4熔点为1900e。两者都有极好的抗氧化功能和高温下极低的挥发性,同时SiC和Si3N4都有极高的硬度和抗冲蚀强度。另外Al2O3、Y2O3、Ta2O5、Si2N2O、ZrO2和莫来石(3Al2O3#2SiO2)等氧化物陶瓷也可作外层涂层材料。  功能层材料目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  功能层的作用是形成玻璃态可流动物质封填涂层微裂纹,阻止氧的进入。目前常用的功能层材料是能氧化形成玻璃态物质的化合物,B4C、TiB2、Si-B、Si-W、Si-Hf、Si-Zr等。Courtois等通过CVD沉积TiB2于SiC外层下保护C/SiC,是在700e~1100e有前途的封填材料。硼化硅有一个独特的优点,被氧化后形成硅酸硼玻璃而没有其它产物,产物能通过硼化物的组成来确定,这意味着可以为特定的温度范围设计功能层材料[25]。MoSi2也被用作功能层材料,氧化生成挥发性的MoO3和玻璃质的SiO2。  粘接层材料  粘接层的功能是粘接基体与涂层系统,减少涂层与基体间的线膨胀系数不匹配的影响,阻挡基体宇航材料工艺XX年第6期材料组成元素向外扩散。粘接层材料最常用的是SiC和Si3N4,它们有与基体材料相近的线膨胀系数,为了降低线膨胀系数,可以在制备涂层时加入低线膨胀系数的材料,如BN和石英等【5】。  4、CFRCMCs的氧化防护  CFRCMCs的氧化保护是近年来复合材料研究的热点之一。CFRCMCs的氧化防护研究主要从4个方面展开:从碳纤维方面考虑,对碳纤维改性,提高纤维自身的抗氧化能力;从基体方面考虑,采用抗氧化的基体材料或通过在基体中添加适当的添加剂制备裂纹可自愈合的基体;从界面层考虑,为复合材料研制抗氧化界面层;从材料表面着手,为CFRCMCs设计合适的抗氧化涂层。【6】  4.1碳纤维改性目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  CFRCMCs在高温氧化气氛中的氧化损伤实质上是由碳纤维的氧化所引起,因此通过采取一定的措施,提高碳纤维自身的抗氧化能力,是提高CFRCMCs抗氧化性能的根本途径。提高碳纤维的质量、采用石墨纤维、对碳纤维表面进行处理等都可以改善C/C复合材料的抗氧化性能。对碳纤维进行高温热处理,可以提高纤维的石墨化程度,降低纤维中杂质的含量,减少杂质的氧化催化作用,从而提高纤维的抗氧化能力。在碳纤维中引入B、H3PO4、P或硼酸等氧化抑制剂,可有效提高碳纤维的抗氧化性能【7】。  4.2基体抗氧化技术目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  目前研究的基体抗氧化技术主要有4类:对基体进行热处理。对于C/C复合材料,与碳纤维的改性相类似,对碳基体进行热处理,以提高C/C复合材料的抗氧化性能。向基体中添加抑制剂。通过一些方法向基体中添加磷酸、硼、硼化物及硅化物等抑制剂,封闭基体材料中的活性点,以达到提高复合材料抗氧化性能的目的。向基体中添加密封剂。在基体中添加含硼或含硅材料,如B2O3、B、SiC和B4C等,这些材料在高温下氧化生成玻璃态物质,形成具有综合功能的保护膜,并将基体上的裂纹和孔隙弥合,阻止氧气向材料内部扩散,从而实现复合材料抗氧化的目的。制备多层功能陶瓷基体。这种基体由多个陶瓷材料层和厚度特别薄的易熔材料层交替复合而成,它一方面可以允许裂纹发生多次偏转,使气体沿裂纹扩散的路径延长,避免氧化性气体直接到达碳纤维表面;另一方面,易熔材料层在高温下可以有效地封堵基体微裂纹,阻止氧气沿基体裂纹扩散,从而提高复合材料的抗氧化性能。【8】  4.3界面层抗氧化技术  用B-C、Si-B-C和Si-C作为界面层材料来提高复合材料的抗氧化能力,用莫来石界面层可明显提高Cf/Si-C-N复合材料的抗氧化性能。通过界面层来提高CFRCMCs的抗氧化性能,理想的界面层材料应具备以下条件:①材料本身具有良好的抗氧化能力;②具有较大的热膨胀系数;③具有适当的厚度;④材料自身与碳纤维间具有良好的化学相容性,以免对纤维造成损伤。利用界面层来提高复合材料的抗氧化性能可避免涂层技术所存在的一些问题,但如界面处理不当,则会使复合材料的力学性能出现严重下降。【9】  4.4表面涂层技术  在CFRCMCs表面涂覆涂层可以使复合材料和氧化环境隔离,阻止复合材料发生氧化,从而大幅度升高复合材料在氧化环境中的使用温度。目前根据涂层的形式来分主要有单层涂覆、双层涂覆及多层涂覆。  参考文献:  【1】碳纤维增强陶瓷基复合材料抗氧化技术研究_卢国锋目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  【2】碳纤维增强超高温陶瓷基复合材料的性能与微结构_孙银洁【3—5】碳纤维增强陶瓷基复合材料抗氧化涂层研究进展_邹世钦张长瑞周新贵曹英斌  【6—8】连续碳纤维增强陶瓷基复合材料的氧化行为和氧化防护研究*卢国锋1,许艳2  【9】碳纤维增强陶瓷基复合材料界面的研究进展_何柏林  陶瓷基复合材料课程论文  陶瓷基复合材料综述报告  (Summaryreportofceramicmatrixcomposites)  学院名称:材料科学与工程学院  专业班级:复合材料1111  学生姓名:不知道  学号:  指导教师:  陶瓷基复合材料综述报告  摘要:本文综述了陶瓷基复合材料的研究现状,基体和增强增韧纤维的选择,对陶瓷基复合材料的界面、增韧技术及其制造工艺,尤其是对CVI工艺做出了较为全面的总结和介绍,最后,对陶瓷基复合材料未来发展进行了展望。关键词:陶瓷基复合材料表;增韧技术;制造工艺;界面;发展趋势目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  SummaryreportofceramicmatrixcompositesAbstract:Thispaperreviewstheresearchstatusofceramicmatrixcomposites,thematrixandthetougheningandreinforcingfiberchoice,inceramicmatrixcomposites,interfacialtougheningtechnologyandmanufacturingprocess,especiallymadeamorecomprehensivesummaryandintroductionofCVItechnology,finally,thefuturedevelopmentofTaoCijicompositeswasprospected.  Keywords:ceramicmatrixcompositesheet;tougheningtechnology;manufacturingprocess;interface;developmenttrend  前言目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  陶瓷基复合材料(Ceramicmatrixcomposite,CMC)是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷(Multiphasecompositeceramic)或复相陶瓷(Diphaseceramic)[1]。陶瓷基复合材料是20世纪80年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。因此越来越受到人们的重视。但由于陶瓷材料本身脆性的弱点,作结构材料使用时缺乏足够的可靠性。因而,改善陶瓷材料的脆性已成为陶瓷材料领域亟待解决的问题之一。文献[2]报道,陶瓷基复合材料正是人们预计在21世纪中可替代金属及其合金的发动机热端结构的首选材料。鉴于此,许多国家都在积极开展陶瓷基复合材  料的研究,大大拓宽了其应用领域,并相继研究出各种制备新技术[3]。1陶瓷基复合材料的基体和纤维的选择  基体材料的选择  对基体材料,要求它有较高的耐高温性能,与纤维(或晶须)之间有良好的界面相容性,同时还应考虑到复合材料制造工艺性能。可供选择的基体材料有:玻璃、玻璃-陶瓷、氧化物陶瓷和非氧化物陶瓷材料。  (1)玻璃基复合材料的优点是易于制作(因燃烧过程中可通过基体的粘性流动来进行致密化),且增韧效果好。但其致命的缺点是由于玻璃相的存在容易产生高温蠕变,同时玻璃相还容易向晶态转化而发生析晶,使性能受损,使用温度也受到限制。  (2)氧化物类陶瓷是60年代以前主要使用的陶瓷材料,主要有MgO、Al2O3、SiO2、ZrO2和莫来石等,但这些材料均不宜用于高应力和高温环境中。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  (3)非氧化物陶瓷,如Si3N4、SiC等由于具有较高的强度、模量和抗热震性及优异的高温机械性能而受到人们的重视,与金属材料相比,这类陶瓷材料还有密度较低等特点。  增强增韧纤维的选择  陶瓷基复合材料中最早使用的纤维是金属纤维,如W、Mo、Ta等,用来增韧Si3N4、莫来石、Al2O3和Ta2O5等,这样的陶瓷基复合材料虽然可以得到较高的室温强度,但其致命的缺点是在高温下容易发生氧化,所以又发展了SiC涂层W芯纤维[4]。用这种纤维增韧的Si3N4复合材料,断裂功可提高到3900J·m-2,但强度却仅有55MPa(图1),纤维的抗氧化性仍未解决,而且当T为800℃时,强度会严重下降。C纤维由于有较高的强度、弹性模量和低的成本而被广泛应用于复合材料领域中,但实际中发现,在高温下C纤维与许多陶瓷基体会发生化学反应。  图1Si3N4陶瓷使用SiC涂层W芯纤维增韧前后断裂功的变化[5]目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  Nicalon是由聚碳硅烷熔融纺丝后经热解而成的SiC纤维,其中含有过量的O和C,而过量的C有利于CMC制造过程中在f/m界面上形成富C层,它的存在有利于增韧,但在1000℃以上它会严重氧化,使纤维性能大幅度下降,高温下这种纤维增强复合材料还会产生脆化,主要是因为纤维在高温下性能受损,f/m界面结合加强。氧化物陶瓷纤维还很少受到人们的关注,主要是因为这些纤维与许多陶瓷基体界面结合过于牢固,同时纤维本身还很容易发生晶粒长大,如果其中含有玻璃相时,则会发生高温蠕变[6],起不到良好的增韧效果。但一系列涂层技术的研究和应用,可望这类纤维的应用前景能有所改观。所以目前还迫切需要开发高性能的陶瓷基复合材料的增韧纤维。  2陶瓷基复合材料增韧技术  纤维增韧  为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料的断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶瓷基复合材料的增韧机制包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等[7,8]。  能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  BN、TiC、B4C等复相纤维[9]。韩桂芳等[10]用浆料法结合真空浸渗工艺,制备了二维(2D)石英纤维增强多孔Si3N4-SiO2基复合材料,增加浸渗次数虽不能有效提高复合材料强度,但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变为多级拔出。尹洪峰等[11]利用LPCVI技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明当复合材料界面相厚度为μm时,体积密度为2101~2105g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459MPa,断裂韧性为XXMPa?m1/2,断裂功为25170J?m-2。国外学者[12,13]也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。  纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出较长,但摩擦做功较小,增韧效果也不好,反而强度较低。纤维拔出长度取决于纤维强度分布、界面滑移阻力。因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  晶须增韧  陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体[14]。陶瓷晶须目前常用的有SiC晶须,Si3N4晶须和Al2O3晶须。基体常用的有ZrO2,Si3N4,SiO2,Al2O3和莫来石等。黄政人等[15]采用30%(体积分数)B-SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10%左右,为570MPa,断裂韧性为415MPa?m1/2比纯莫来石提高100%以上。王双喜等[16]研究发现,在2%(摩尔分数)Y2O3-超细料中加入30%(体积分数)的SiC晶须,可以细化2Y-ZrO2材料的晶粒,并且使材料的断裂方式由沿晶断裂为主变为穿晶断裂为主的混合断裂,从而显著提高了复合材料的刚度和韧性。  晶须增韧陶瓷基复合材料的主要增韧机制包括晶须拔出、裂纹偏转、晶须桥联、其增韧机理与纤维增韧陶瓷基复合材料相类似。晶须增韧效果不随温度而变化,因此,晶须增韧被认为是高温结构陶瓷复合材料的主要增韧方式。晶须增韧陶  陶瓷基复合材料  江雪玲  (重庆师范大学化学学院,XX级材料化学,XX)目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的分类及其应用,以及各类陶瓷基复合材料的优点、缺点。最后,综合了陶瓷基复合材料的优点、缺点,并对未来陶瓷基复合材料的发展提出了期许以及发展方向。  关键词:陶瓷基复合材料、氧化物基透波材料、磷酸盐基透波材料、氮化物基透波材料、连续纤维增强陶瓷基复合材料。  陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。  1、陶瓷基复合材料  由于陶瓷本身存在韧性和可靠性不足的缺点,因此人们对各种陶瓷材料进行优化设计,制备出整体性能更为优异的陶瓷基透波复合材料。陶瓷基透波复合材料按基体的成分不同可主要分为氧化物基、磷酸盐基及氮化物基等系列。下表为部分陶瓷基透波复合材料的基本性能。  表:部分陶瓷基透波复合材料的基本性能  2、氧化物基透波材料目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  虽然石英陶瓷具有优异的介电性能,但其也存在抗雨蚀性能、力学性能较差的缺点,为此人们通过各种增强方式来提高石英陶瓷材料的断裂韧性和可靠性。连续纤维增强陶瓷基复合材料具有强度高、韧性好、密度低等特点,因而收到了广泛关注。等制备了三维石英纤维织物增强二氧化硅复合材料AS-3DX,材料的介电常数为,介电损耗为(,25℃),国防科学技术大学宋阳曦采用溶胶-凝胶工艺,通过浓缩硅溶胶并引入手糊成型工艺和模压工艺制备了二维石英纤维织物增强石英基(2DSiO2f/SiO2)复合材料,其介电常数为~,损耗角正切为~,热导率为~/(),由此可见,这类材料的透波性能优异,但热导率仍然偏高,高温性能有待改善。  2、磷酸盐基透波材料  磷酸盐基复合材料一般由布块或织物经磷酸盐溶液浸渍后加压固化而得。目前在航天透波材料领域获得应用的主要有硅质纤维增强磷酸铝、磷酸铬及磷酸铬铝复合材料。磷酸盐基复合材料具有耐高温、高强度、介电性能优异、抗氧化、  结构可设计良好以及热膨胀系数小的特点。而磷酸盐最大的缺点是吸湿性很强,一般通过在材料表面涂覆有机涂层以达到防潮的目的。铝震宇利用传流的无压烧结技术制备出硼酸铝晶须增强了磷酸铝陶瓷基透波复合材料,材料的弯曲强度为,介电常数和介电损耗分别在~和~范围内。  3、氮化物基透波材料目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  采用氮化硅、氮化硼制备的复合材料具有更稳定的热物理性能和更好的力学性能。国防科学技术大学姜勇刚采用先驱体转化法制备出新型天线罩材料-石英纤维增强氮化物复合材料。在测试频率()下,材料在室温的介电常数和介电损耗分别为、,25~400℃时比热容为~/(),热导率为~/()。可以看出该材料的透波性能比较好,但是热导率较高。  4、连续纤维补强陶瓷基复合材料  连续纤维补强陶瓷基复合材料(ContinuousFiberReinforcedCeramicMatrixComposites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用。20世纪70年代初,JAveston在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件;SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦。由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性。  陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。  5、连续纤维增强陶瓷基复合材料的制备方法  ①、料浆浸渍和热压烧结法  料浆浸渍和热压烧结法的基本原理是将具有可烧结性的基体原料粉末与连续纤维用浸渍工艺制成坯件,然后高温下加压烧结,使基体材料与纤维结合成复合材料。工艺流程图如图1所示。  图1料浆浸渍和热压烧结制备连续纤维  增强陶瓷基复合材料的工艺流程目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  料浆浸渍是指让纤维通过盛有料浆的容器浸挂料浆后缠绕在卷简上,烘干,沿卷简母线切断,取下后得到无纬布,将无纬布剪裁成一定规格的条带或片,在模具中叠排,即成为预成型坯件。经高温去胶和烧结得到复合材料制件。热压烧结应按预定规律(即热压制度)升温和加压。热压过程中,最初阶段是高温去胶,随粘结剂挥发、逸出,将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最终获得致密化的复合材料。此种工艺己用于制备以玻璃相为基体的复合材料。  ②、直接氧化沉积法  直接氧化沉积法最早被用于制备A12O3/A1复合材料,后推广用于制备连续纤维增强氧化物陶瓷基复合材料。LANXIDE法工艺原理为:将连续纤维预成型坯件置于熔融金属上面,因毛细管作用,熔融金属向预成型体中渗透。由于熔融金属中含有少量添加剂,并处于空气或氧化气氛中,浸渍到纤维预成型体中的熔融金属与气相氧化剂反应形成氧化物基体,产生的氧化物沉积在纤维周围,形成含有少量残余金属的、致密的连续纤维增强陶瓷基复合材料。此种方法适用于制备以氧化铝为基体的陶瓷基复合材料,如SiC/A1203,在1200~C的抗弯强度为350MPa,断裂韧性为18MPa·m1/2”,室温时的抗弯强度为450MPa,断裂韧性为21MPa·m1/2。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。 为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  直接氧化沉积法工艺优点是:对增强体几乎无损伤,所制得的陶瓷基复合材料中纤维分布均匀;在制备过程中不存在收缩,因而复合材料制件的尺寸精确;工艺简单,生产效率较高,成本低,所制备的复合材料具有高比强度,良好韧性目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
大家都在看
近期热门
关闭