欢迎来到天天文库
浏览记录
ID:30302042
大小:20.51 KB
页数:10页
时间:2018-12-28
《理论力学教学总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划理论力学教学总结 理论力学课程总结 一·用一条你认为的主线来贯穿总结本课程的学习内容 理论力学是一门研究物体机械运动的一般规律的科学。经过一学期的学习,对理论力学有了初步大体的认识,笔者试图通过“运动”这条主线对课程进行梳理与总结: 1·首先要强调的是这里说的运动是指速度远小于光速的宏观物体的机械运动,他以牛顿力学的基本定律为基础,属于古典力学范畴。理论力学所研究的是这种运动中最一般、最普遍的规律,是各门力学
2、分支的基础。理论力学的内容主要包括:静力学、运动学、动力学。但笔者认为可以通过对物体运动的分析来将其串联。 2·运动学:经典力学中运动是指运动物体空间位置的变化。那么如何描述这种变化呢?这里就涉及到运动学的知识。物体的运动和静止是相对的,运动是绝对的,静止是相对的。选取的参考体不同,那么物体相对于不同参考体的运动也不同。故描述任何运动都需要指明参考体。现只从几何的角度来研究物体的运动,同时又根据研究对象的不同分为质点运动与刚体运动,根据运动的复杂程度分为简单运动与合成运动,根据描述方式的不同分为轨迹、速度、加速度的讨论。目的
3、-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 质点的运动:质点运动的可以通过矢量法、直角坐标系法、自然法进行描述,三者相互联系又各有侧重和优势。点的复合运动与点的运动学方法作比较,可知前者主要研究瞬时的速度与加速度,后者通 过数学知识建立动点绝对方程,可以得到持续运动中的各个运动量。重点总结点的合成运动。点的合成运动有三个对象:动点,定
4、参考系,动参考系。 点的速度合成:va?ve?vr aa?ae?ar?aC点的加速度合成: 科氏加速度:aC?2ωe?vr,体现了动坐标系转动时,相对运动与牵连运动的相互影响。 其中,要强调的是瞬时牵连点的概念:任一瞬时,动系上与动点M重合的点M'即为此瞬时动点M的牵连点。而瞬时牵连点的速度与加速度即为动点的牵连速度与加速度,这个概念可以很好的判断e与ae。通过做过的题目总结可知,动点与动系的选择往往是解题的关键,而易于辨析的相对轨迹是选择动点与动系的重要原则,用充分利用约束条件使得相对轨迹的速度与加速度易于求解。
5、刚体的平面运动:刚体的运动可分为刚体的基本运动和刚体的平面运动。刚体的平面运动可看做是多种基本运动的合成。在分析刚体速度与加速度时,最重要的方法为基点法。速度分析时,有两个重要的定理,速度投影定理与瞬心法。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 刚体各点速度分析:vvA?vB+vAB,vAB???rBA 刚体各点加速度分析:a
6、A?a?aAB?aBnAB? 2?an???r,aBABABA?α?rBA 刚体是在受力后其大小、形状和内部各点相对位置都保持不变的理想化模型,基于这个原理,有速度投影定理:(vB)AB?(vA)AB 刚体是理想化的质点系,故刚体的运动与点的运动既有联系,也 vAB可看作相对速度,有区别。上面公式中的vA为基点的绝对速度, vA即为绝对速度。但需注意的是,刚体的基点与动点是在一个刚体上,而点的复合运动中动系的选择是任意的。 3·静力学:力是物体间的相互作用,也是物体运动状态发生改变或是形变的原因。当物体静止时,必受
7、平衡力。由于静止是相对的,故可看做是一种特殊的运动形式。这种运动下分析平衡力的问题为静力学问题。静力学主要研究受力物体平衡时作用力所应满足条件,受力分析的方法,以及力系简化方法。而解决问题的关键是通过受力分析建立有效的力系平衡方程,进而求解受力或力矩。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 受力分析首先要判断力的类型,静力学中,
8、主要有主动力与约束反力,主动较容易判断,但不同的约束产生不同的约束反力,通过分析约束的类型及性质,判断约束反力和约束反力偶。 (e)e(e)F?F?0M?r?F?0Ri任意力系平衡方程:?i,o?i 其中,平面力系可列三个独立方程,空间力系可列六个独立方程, 分别可以解
此文档下载收益归作者所有