平面向量空间向量知识点

平面向量空间向量知识点

ID:30148628

大小:351.54 KB

页数:7页

时间:2018-12-27

平面向量空间向量知识点_第1页
平面向量空间向量知识点_第2页
平面向量空间向量知识点_第3页
平面向量空间向量知识点_第4页
平面向量空间向量知识点_第5页
资源描述:

《平面向量空间向量知识点》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、平面向量§2.1.1、向量的物理背景与概念1、了解四种常见向量:力、位移、速度、加速度.2、既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、长度相等且方向相同的向量叫做相等向量.§2.2.

2、1、向量加法运算及其几何意义1、三角形加法法则和平行四边形加法法则.2、≤.§2.2.2、向量减法运算及其几何意义1、与长度相等方向相反的向量叫做的相反向量.2、三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下:⑴,  ⑵当时,的方向与的方向相同;当时,的方向与的方向相反.2、平面向量共线定理:向量与共线,当且仅当有唯一一个实数,使.§2.3.1、平面向量基本定理-7-1、平面向量基

3、本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.§2.3.2、平面向量的正交分解及坐标表示1、.§2.3.3、平面向量的坐标运算1、设,则:⑴,⑵,⑶,⑷.2、设,则:.§2.3.4、平面向量共线的坐标表示1、设,则⑴线段AB中点坐标为,⑵△ABC的重心坐标为.§2.4.1、平面向量数量积的物理背景及其含义1、.2、在方向上的投影为:.3、.4、.5、.§2.4.2、平面向量数量积的坐标表示、模、夹角1、设,则:⑴-7-⑵⑶⑷2、设,则:.3、两向量的夹

4、角公式4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,则函数的图像按向量平移后的图像的解析式为§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量:  若A、B是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.⑵.平面的法向量:  若向量所在直线垂直于平面,

5、则称这个向量垂直于平面,记作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面的法向量为.-7-③求出平面内两个不共线向量的坐标.④根据法向量定义建立方程组.⑤解方程组,取其中一组解,即得平面的法向量.(如图)1、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即. 即:两直线平行或重合两直线的方向向量共线。⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即.即:直线与平面平行直

6、线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.即:两平面平行或重合两平面的法向量共线。3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.即:两直线垂直两直线的方向向量垂直。⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即.②(法二)设直线的方向向量是,平面内的两

7、个相交向量分别为,若即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直。⑶面面垂直-7-若平面的法向量为,平面的法向量为,要证,只需证,即证.即:两平面垂直两平面的法向量垂直。4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,  则⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角

8、为,与的夹角为, 则为的余角或的补角的余角.即有:⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面OABOABl二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二面角的平面角.如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角的平面角为,则二面角为的夹角或其补角根据具体图形确定是锐角或是钝角:◆如果是锐角,则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。