资源描述:
《求圆锥曲线方程(2)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、阳光家教网www.ygjj.com西安家教青岛家教郑州家教苏州家教天津家教中国最大找家教、做家教平台难点23求圆锥曲线方程求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.●难点磁场1.(★★★★★)双曲线=1(b∈N)的两个焦点F1、F2,P为双曲线上一点,
2、OP
3、<5,
4、PF1
5、
6、,
7、F1F2
8、,
9、PF2
10、成等比数列,则b2=_________.2.(★★★★)如图,设圆P满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.●案例探究[例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.(1)建立坐标系并写出该双曲
11、线方程.(2)求冷却塔的容积(精确到10m2,塔壁厚度不计,π取3.14).命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力,属★★★★★级题目.知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积.错解分析:建立恰当的坐标系是解决本题的关键,积分求容积是本题的重点.技巧与方法:本题第一问是待定系数法求曲线方程,第二问是积分法求体积.解:如图,建立直角坐标系xOy,使AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴.设双
12、曲线方程为=1(a>0,b>0),则a=AA′=7又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有阳光家教网www.ygjj.com西安家教青岛家教郑州家教苏州家教天津家教中国最大找家教、做家教平台由题意,知y2-y1=20,由以上三式得:y1=-12,y2=8,b=7故双曲线方程为=1.(2)由双曲线方程,得x2=y2+49设冷却塔的容积为V(m3),则V=π,经计算,得V=4.25×103(m3)答:冷却塔的容积为4.25×103m3.[例2]过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆
13、C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强,属★★★★★级题目.知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题.错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式.解法二,用韦达定理.解法
14、一:由e=,得,从而a2=2b2,c=b.设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,设AB中点为(x0,y0),则kAB=-,又(x0,y0)在直线y=x上,y0=x0,于是-=-1,kAB=-1,设l的方程为y=-x+1.右焦点(b,0)关于l的对称点设为(x′,y′),阳光家教网www.ygjj.com西安家教青岛家教郑州家教苏州家教天津家教中国最大找家教、做家教平台由点(1,1
15、-b)在椭圆上,得1+2(1-b)2=2b2,b2=.∴所求椭圆C的方程为=1,l的方程为y=-x+1.解法二:由e=,从而a2=2b2,c=b.设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1),将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-.直线l:y=x过AB的中点(),则,解得k=0,或k=-1.若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以
16、k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一.[例3]如图,已知△P1OP2的面积为,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为的双曲线方程.命题意图:本题考查待定系数法求双曲线的方