大学数学微积分实验报告

大学数学微积分实验报告

ID:30095491

大小:16.43 KB

页数:5页

时间:2018-12-26

大学数学微积分实验报告_第1页
大学数学微积分实验报告_第2页
大学数学微积分实验报告_第3页
大学数学微积分实验报告_第4页
大学数学微积分实验报告_第5页
资源描述:

《大学数学微积分实验报告》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划大学数学微积分实验报告  数学实验报告  实验一微积分基础  学院:数学与信息科学学院  班级:09级数学班  姓名:***学号:**  实验一:微积分基础  微积分II实验报告  专业班级姓名学号实验日期成绩等级教师评阅日期  [问题描述]  为迎接香港回归,柯受良于1997年6月1日驾车飞越黄河壶口。东岸跑道长265米,柯驾车从跑到东端启动到跑道终端时速度为150km/h,他随即以仰角5°冲出,飞越跨度为57米,安全落到西岸木桥上。问:  柯跨越黄河用了多长时间?  若起

2、飞点高出河面10米,柯驾车飞行的最高点离河面多少米?  西岸木桥面与起飞点高度差是多少米?  要求:①创建符号运方程;②解水平方向符号方程;③先求铅垂方向符号极值,然后再转换成数值极值。  [模型]目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  150km/h=125/3  由题意,运动方向可分为水平与铅垂两个方向,即创建参数方程:  x=v0*cos(5/360*pi)*t=150*cos(5

3、/360*pi)*t  y1=v0*sin(5/360*pi)*t1-1/2*g*t1^2=150*sin(5/360*pi)*t1-5*t1^2  y2=H-1/2*g*t^2-h=H-5*t^2-h  其中t=t1+t2。H为汽车飞过的最高点距水面的距离。  有跨度57米得,x=57,由参数方程可得方程,  57=125/3*cos(5/360*pi)*t  当车子铅垂方向速度为零时车子飞行为最高点,即  v0*sin(5/360*pi)-g*t1=125/3*sin(5/360*pi)-10*t1=0  H=125/3*sin(5/360*pi)*t1-5*t1^2+h  (3)

4、由时间,  t=t1+t2。  hc=H-1/2*g*t2^2-h  [求解方法]  >>symst0t  >>t01=solve('125/3*t*cos(5/360*pi)=57')  t01=目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  171/125/cos(1/72*pi)  >>t02=eval(t01)  t02=  >>symst1  >>t10=solve('125/3*si

5、n(5/360*pi)-10*t1=0')  t10=  25/6*sin(1/72*pi)  >>t12=eval(t10)  t12=  >>h=10;  >>H0=125/3*sin(5/360*pi)*t10-5*t10^2+h  H0=  /63936*sin(1/72*pi)-3125/36*sin(1/72*pi)^2+10  >>H1=eval(H0)  H1=  >>t2=t01-t10  t2=  171/125/cos(1/72*pi)-25/6*sin(1/72*pi)  >>hc1=H0-1/2*10*t2^2-h  hc1=目的-通过该培训员工可对保安行业有

6、初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  /63936*sin(1/72*pi)-3125/36*sin(1/72*pi)^2-5*(171/125/cos(1/72*pi)-25/6*sin(1/72*pi))^2  >>hc2=eval(hc1)  hc2=  -  [结果]  柯跨越黄河用了秒。  若起飞点高出河面10米,柯驾车飞行的最高点离河面米。  西岸木桥面与起飞点高度差是米。  [结果分析及结论]  西岸木桥

7、应比东岸低米以上汽车才能飞过去。  成都信息工程大学数学实验报告  专业班级姓名学号实验日期实验报告分数教师胡鹏评阅日期  1.建立文件,计算极限lim(2x?1)。x?1解答:建立文件如下:clear  clc  symsx;  f=2*x+1;  a1=limit(f,1)  运行后,显示结果为:目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。