资源描述:
《勾股定理的应用教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、勾股定理的应用教案1作者:未知 来源:互联网 更新:2009-11-9 阅读: 栏目:八年级数学教案勾股定理的应用教案1文章来源自3edu教育网 学习目标: 1、能运用勾股定理及直角三角形的判定条件解决实际问题。 2、在运用勾股定理解决实际问题的过程中,感受数学的"转化"思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。 学习重点: 实际问题转化成数学问题再转化为直角三角形中 学习难点: "转化"思想的应用 学习过程: 一.学前准备
2、: 阅读课本第80页到81页,完成下列各题: 1.在Rt△ABC中,∠C=90°,如果b=15,c=17,求a 2.问:我们以前已学过了中哪三种判断直角三角形的方法? (1)什么叫勾股定理? (2)勾股定理的逆定理是 . 3、如图,学校有一块长方形花圃,有极少数人为了避开拐角走"捷径",在花圃内走出一条"路".他们仅仅少走了多少步路(假设2步为1米),却踩伤了花草? 4、自学课本P.80、81中的例1、例2.请说出每一题的解题思路. 二.自学、合作探究: (一)自学、相
3、信自己: 1、练习:课本P.81――1、2. 2、讨论交流:P。82.――1、2. 你能利用下图画长、、的线段长吗?与同学交流。 (二)思索、交流: 1、如图,在△ABC中,AB=AC,D为BC上任一点.试说明:AB2-AD2=BD·DC. 2、如图,一块草坪的形状为四边形ABCD,其中∠B=90?,AB=3m,BC=4m,CD =12m,AD=13m,求这块草坪的面积。 3、如图,分别以直角三角形的三边为边长向外作正方形,边长分别a、b、c(c表示斜边)然后分别以三个正方形的中
4、心为圆心、正方形边长的一半为半径作圆,三个圆的面积分别记为S1、S2、S3,试探索三个圆的面积之间的关系. (三)应用、探究: 1、甲、乙两人在沙漠进行探险,某日早晨8∶00甲先出发,他以6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午10∶00时,甲、乙两人相距多远? 2、校园内各室的分布及相关数据所示,戴老师在某一时段的行程如下:办公室 教室 实验室 仪器室 办公室.已知:AB=80m,AD=82m.在此期间, 戴老师走了多长的路(结果保留3个有效数字)? 3、有三座城市A
5、,B,C,两两距离相等,现欲建一天然气供气网,向这三座城市供气,希望供气管道的总长越短越好,今有以下三种方案(如图)你认为哪种方案最好?(实线是供气网) 4.如图,已知长方体盒子的宽a为8cm,长b为10cm,高c为6cm.一只聪明的小蚂蚁从顶点A处出发在长方体的表面爬行,想尽快吃到在顶点B处的糖果,求小蚂蚁爬行的最短路径的长(结果保留3个有效数字). 5.如图,一张宽为3,长为4的长方形纸片ABCD,沿着对角线BD对折,点C落在点C1的位置,BC1交AD于E.求AE的长. 三.学习体会: 四.自我测试: 1、等腰直角三角形三边长
6、度之比为 ( ) A.1:1:2 B.1:1: C.1:2: D.不确定 ⒉若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为 ( ) A.18cm B.20cm C.24cm D.25cm ⒊一架2.5m长的梯子斜靠在一
7、竖直的墙上,这时梯脚距离墙角0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯脚移动的距离是 ( ) A.1.5m B.0.9m C.0.8m D.0.5m ⒋如图,在锐角三角形ABC中,AD⊥BC,AD=12,AC=13,BC=14.则AB=_____. ⒌如图是一个育苗棚,棚宽a=6m,棚高b=2.5m,棚长d=10m,则覆盖在棚斜面上的塑料薄膜的面积为_________m2. ⒍在高5m,长13m的一段台阶上铺上地毯,台
8、阶的剖面图如图所示,地毯的长度至少需要___________m. ⒎甲、乙两人同时从同一地点匀速出发1h