probabilistic inference using markov chain monte carlo methods (neal)

probabilistic inference using markov chain monte carlo methods (neal)

ID:30015989

大小:1.08 MB

页数:144页

时间:2018-12-26

probabilistic inference using markov chain monte carlo methods (neal)_第1页
probabilistic inference using markov chain monte carlo methods (neal)_第2页
probabilistic inference using markov chain monte carlo methods (neal)_第3页
probabilistic inference using markov chain monte carlo methods (neal)_第4页
probabilistic inference using markov chain monte carlo methods (neal)_第5页
资源描述:

《probabilistic inference using markov chain monte carlo methods (neal)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ProbabilisticInferenceUsingMarkovChainMonteCarloMethodsRadfordM.NealTechnicalReportCRG-TR-93-1DepartmentofComputerScienceUniversityofTorontoE-mail:radford@cs.toronto.edu25September1993cCopyright1993byRadfordM.NealAbstractProbabilisticinferenceisanattractiveapproachtouncertainreasoningandem-pirica

2、llearninginarti cialintelligence.Computationaldicultiesarise,however,becauseprobabilisticmodelswiththenecessaryrealismand exibilityleadtocom-plexdistributionsoverhigh-dimensionalspaces.Relatedproblemsinother eldshavebeentackledusingMonteCarlomethodsbasedonsamplingusingMarkovchains,providingarich

3、arrayoftechniquesthatcanbeappliedtoproblemsinarti cialintelligence.TheMetropolisalgorithm"hasbeenusedtosolvedicultproblemsinstatisticalphysicsforoverfortyyears,and,inthelastfewyears,therelatedmethodofGibbssampling"hasbeenappliedtoproblemsofstatisticalinference.Concurrently,analternativemethodf

4、orsolvingproblemsinstatisticalphysicsbymeansofdynamicalsimulationhasbeendevelopedaswell,andhasrecentlybeenuni edwiththeMetropolisalgorithmtoproducethehybridMonteCarlo"method.Incomputerscience,Markovchainsamplingisthebasisoftheheuristicoptimizationtechniqueofsimulatedannealing",andhasrecentlybee

5、nusedinrandomizedalgorithmsforapproximatecountingoflargesets.Inthisreview,Ioutlinetheroleofprobabilisticinferenceinarti cialintelligence,presentthetheoryofMarkovchains,anddescribevariousMarkovchainMonteCarloalgorithms,alongwithanumberofsupportingtechniques.Itrytopresentacomprehensivepictureofther

6、angeofmethodsthathavebeendeveloped,includingtechniquesfromthevariedliteraturethathavenotyetseenwideapplicationinarti cialintelligence,butwhichappearrelevant.Asillustrativeexamples,Iusetheproblemsofprobabilisticinferenceinexpertsystems,discoveryoflatentclassesfromdata,andBayesianlearningforneuraln

7、etworks.AcknowledgementsIthankDavidMacKay,RichardMann,ChrisWilliams,andthemembersofmyPh.Dcommittee,Geo reyHinton,RudiMathon,DemetriTerzopoulos,andRobTibshirani,fortheirhelpfulcommentsonthisreview.Thisworkwassupportedby

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。