资源描述:
《probabilistic inference using markov chain monte carlo methods (neal)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ProbabilisticInferenceUsingMarkovChainMonteCarloMethodsRadfordM.NealTechnicalReportCRG-TR-93-1DepartmentofComputerScienceUniversityofTorontoE-mail:radford@cs.toronto.edu25September1993cCopyright1993byRadfordM.NealAbstractProbabilisticinferenceisanattractiveapproachtouncertainreasoningandem-pirica
2、llearninginarticialintelligence.Computationaldicultiesarise,however,becauseprobabilisticmodelswiththenecessaryrealismand
exibilityleadtocom-plexdistributionsoverhigh-dimensionalspaces.RelatedproblemsinothereldshavebeentackledusingMonteCarlomethodsbasedonsamplingusingMarkovchains,providingarich
3、arrayoftechniquesthatcanbeappliedtoproblemsinarticialintelligence.TheMetropolisalgorithm"hasbeenusedtosolvedicultproblemsinstatisticalphysicsforoverfortyyears,and,inthelastfewyears,therelatedmethodofGibbssampling"hasbeenappliedtoproblemsofstatisticalinference.Concurrently,analternativemethodf
4、orsolvingproblemsinstatisticalphysicsbymeansofdynamicalsimulationhasbeendevelopedaswell,andhasrecentlybeenuniedwiththeMetropolisalgorithmtoproducethehybridMonteCarlo"method.Incomputerscience,Markovchainsamplingisthebasisoftheheuristicoptimizationtechniqueofsimulatedannealing",andhasrecentlybee
5、nusedinrandomizedalgorithmsforapproximatecountingoflargesets.Inthisreview,Ioutlinetheroleofprobabilisticinferenceinarticialintelligence,presentthetheoryofMarkovchains,anddescribevariousMarkovchainMonteCarloalgorithms,alongwithanumberofsupportingtechniques.Itrytopresentacomprehensivepictureofther
6、angeofmethodsthathavebeendeveloped,includingtechniquesfromthevariedliteraturethathavenotyetseenwideapplicationinarticialintelligence,butwhichappearrelevant.Asillustrativeexamples,Iusetheproblemsofprobabilisticinferenceinexpertsystems,discoveryoflatentclassesfromdata,andBayesianlearningforneuraln
7、etworks.AcknowledgementsIthankDavidMacKay,RichardMann,ChrisWilliams,andthemembersofmyPh.Dcommittee,GeoreyHinton,RudiMathon,DemetriTerzopoulos,andRobTibshirani,fortheirhelpfulcommentsonthisreview.Thisworkwassupportedby