资源描述:
《probabilistic inference using markov chain monte carlo methods - r. neal》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ProbabilisticInferenceUsingMarkovChainMonteCarloMethodsRadfordM.NealTechnicalReportCRG-TR-93-1DepartmentofComputerScienceUniversityofTorontoE-mail:radford@cs.toronto.edu25September1993cCopyright1993byRadfordM.NealAbstractProbabilisticinferenceisanattractiveapproachtouncertainreas
2、oningandem-piricallearninginarticialintelligence.Computationaldicultiesarise,however,becauseprobabilisticmodelswiththenecessaryrealismand
exibilityleadtocom-plexdistributionsoverhigh-dimensionalspaces.RelatedproblemsinothereldshavebeentackledusingMonteCarlomethodsbasedonsampli
3、ngusingMarkovchains,providingaricharrayoftechniquesthatcanbeappliedtoproblemsinarticialintelligence.TheMetropolisalgorithm"hasbeenusedtosolvedicultproblemsinstatisticalphysicsforoverfortyyears,and,inthelastfewyears,therelatedmethodofGibbssampling"hasbeenappliedtoproblemsofsta
4、tisticalinference.Concurrently,analternativemethodforsolvingproblemsinstatisticalphysicsbymeansofdynamicalsimulationhasbeendevelopedaswell,andhasrecentlybeenuniedwiththeMetropolisalgorithmtoproducethehybridMonteCarlo"method.Incomputerscience,Markovchainsamplingisthebasisofthehe
5、uristicoptimizationtechniqueofsimulatedannealing",andhasrecentlybeenusedinrandomizedalgorithmsforapproximatecountingoflargesets.Inthisreview,Ioutlinetheroleofprobabilisticinferenceinarticialintelligence,presentthetheoryofMarkovchains,anddescribevariousMarkovchainMonteCarloalgor
6、ithms,alongwithanumberofsupportingtechniques.Itrytopresentacomprehensivepictureoftherangeofmethodsthathavebeendeveloped,includingtechniquesfromthevariedliteraturethathavenotyetseenwideapplicationinarticialintelligence,butwhichappearrelevant.Asillustrativeexamples,Iusetheproblems
7、ofprobabilisticinferenceinexpertsystems,discoveryoflatentclassesfromdata,andBayesianlearningforneuralnetworks.AcknowledgementsIthankDavidMacKay,RichardMann,ChrisWilliams,andthemembersofmyPh.Dcommittee,GeoreyHinton,RudiMathon,DemetriTerzopoulos,andRobTibshirani,fortheirhelpfulcom
8、mentsonthisreview.Thisworkwassupportedby