introduction to geometrical physics

introduction to geometrical physics

ID:30012259

大小:8.62 MB

页数:691页

时间:2018-12-25

introduction to geometrical physics_第1页
introduction to geometrical physics_第2页
introduction to geometrical physics_第3页
introduction to geometrical physics_第4页
introduction to geometrical physics_第5页
资源描述:

《introduction to geometrical physics》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnIntroductiontoGEOMETRICALPHYSICSR.Aldrovandi&J.G.PereiraInstitutodeF´ısicaTe´oricaStateUniversityofS˜aoPaulo–UNESPS˜aoPaulo—BrazilToourparentsNice,Dina,Jos´eandTitoiiiPREAMBLE:SPACEANDGEOMETRYWhatstuff’tismadeof,whereofitisborn,Iamtolearn.MerchantofVeniceThesimplest

2、geometricalsettingused—consciouslyornot—byphysi-cistsintheireverydayworkisthe3-dimensionaleuclideanspaceE3.Itcon-sistsofthesetR3oforderedtriplesofrealnumberssuchasp=(p1,p2,p3),q=(q1,q2,q3),etc,andisendowedwithaveryspecialcharacteristic,ametricdefinedbythedistancefunct

3、ion"#1/2X3ii2d(p,q)=(p−q).i=1Itisthespaceofordinaryhumanexperienceandthestartingpointofourgeometricintuition.Studiedfortwo-and-a-halfmillenia,ithasbeentheobjectofcelebratedcontroversies,themostfamousconcerningtheminimumnumberofpropertiesnecessarytodefineitcompletely.F

4、romAristotletoNewton,throughGalileoandDescartes,theverywordspacehasbeenreservedtoE3.Onlyinthe19-thcenturyhasitbecomeclearthatother,differentspacescouldbethoughtof,andmathematicianshavesincegreatlyamusedthemselvesbyinventingallkindsofthem.Forphysi-cists,theage-longdeba

5、teshiftedtoanotherquestion:howcanwerecognize,amongstsuchinnumerablepossiblespaces,thatrealspacechosenbyNatureasthestage-setofitsprocesses?Forexample,supposethespaceofourev-erydayexperienceconsistsofthesamesetR3oftriplesabove,butwithadifferentdistancefunction,suchasX3i

6、id(p,q)=

7、p−q

8、.i=1Thiswoulddefineadifferentmetricspace,inprincipleasgoodasthatgivenabove.Wereitonlyamatterofprinciple,itwouldbeasgoodasiiiivanyotherspacegivenbyanydistancefunctionwithR3assetpoint.Itsohappens,however,thatNaturehaschosentheformerandnotthelatterspaceforust

9、olivein.Toknowwhichoneistherealspaceisnotasimplequestionofprinciple—somethingelseisneeded.Whatelse?Theanswermayseemrathertrivialinthecaseofourhomespace,thoughlesssoinotherspacessingledoutbyNatureinthemanydifferentsituationswhichareobjectsofphysicalstudy.ItwasgivenbyRi

10、emanninhisfamousInauguralAddress1:“...thosepropertieswhichdistinguishSpacefromothercon-ceivabletriplyextendedquantitiescanonlybeded

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。