mba联考数学考试复习:基本概念理解需透彻(1)

mba联考数学考试复习:基本概念理解需透彻(1)

ID:29944875

大小:60.04 KB

页数:6页

时间:2018-12-25

mba联考数学考试复习:基本概念理解需透彻(1)_第1页
mba联考数学考试复习:基本概念理解需透彻(1)_第2页
mba联考数学考试复习:基本概念理解需透彻(1)_第3页
mba联考数学考试复习:基本概念理解需透彻(1)_第4页
mba联考数学考试复习:基本概念理解需透彻(1)_第5页
资源描述:

《mba联考数学考试复习:基本概念理解需透彻(1)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、MBA联考数学考试复习:基本概念理解需透彻一  MBA联考数学复习技巧:掌握基础知识,包括深刻理解基本概念和定理、熟练运用基本数学方法。mba数学95%以上的题都是考基础知识。历届高分考生都强调对基础知识的掌握,试列举部分观点:  (2002数学满分)对于基本概念力求理解透彻,掌握基本的解题规律和方法。概念、定义这些东西是构件数学大厦的基石,其实到最后的阶段有很多人会发现很多题不会做,就是因为概念不清。更何况,如果你细心推敲往年考题,你会发现有些题只能从基本的概念定义出发才能推出正确的结果。  (2000年状元)我认为mba数学考题并不很难,把基本要领

2、理解透,应付考试足够了,难题怪题用不着做。做题的目的也在于掌握理解概念和熟悉考试题理,但做得太多了完全没有必要,太浪费时间。数学还要注意一个运算问题,因为很久不用了,考试时题量和计算量又很大,就经常会出现2+3=6的问题。  (复旦第一)我知道自己并不是数学天才,所以从不跟难题计较,但是那些基本题目和中等难度的题是一定要做熟的,而且在第一阶段就应该做到。由于去年数学考试方式变化,我在最后冲刺阶段针对充分型判断和选择题型又进行了强化训练。  (315,2002清华,刘宾)数学:基本概念百读不厌,典型例题百做不厌。我在高等数学导数、微分、偏导数等几个部分遇

3、到几道基本概念题目,二个月内反反复复做了二十几遍,有时甚至以为书上的一些步骤可以略去,也能得出相同结论,后来才深入领悟到是自己概念不清楚。这样做透之后,其他题目有一些小的花招我很快就识别出来了。  不做偏题做难题,不求做多,但求做透。什么是偏题?仅就一个非基本概念一直挖下去特别深就是偏题目。比如某些N阶行列式。什么是好的难题?要用多个基本概念巧妙结合才能解决的问题就是好题。比如概率题中用到了数列和微积分。  对于数学我还是强调基本功,在复习数学的第一步,我选择了看大学时期的课本,尽量的把课本上定理和概念的来龙去脉弄清楚,尽量准确和清楚的理解概念和公式,

4、这样你就会体会到概念的本质,即使是最难的、最复杂的题也是能够分解成为若干个小概念的;课后的题,我也尽量做了,因为课后题和参考书上的题有点不同的是它是按你的由不知到知、由浅入深的学习进度安排的,所以在深度和难度上的连续性比较好,不象许多的参考书,题目的安排是以读者已有一定的概念基础为思路的,所以跳跃性较大,不利于打好基本功,尤其是对于数学基础较薄弱的同学,从基础开始尤为重要。  希望上面的这些同学原谅我,未经允许就引用了他们的文章。看在大家都是同一学校的学员份上,不要向我追究版权问题。好东西应该由大家分享。基础知识这么重要,那么哪些内容属于基础知识呢?对

5、不起,没有捷径,机工版教材上讲的都是基础知识。我这里只能选几个主题说一下。  1、集合的概念  集合是数学中最重要的概念,是整个数学的基础。我印象中,集合的定义是:集合是具有相同性质的元素的集体。这个定义属于循环定义,因为集体就是集合。我的理解是:把一些互不相同的东西放在一起,就组成一个集合。唯一的要求是“互不相同”。集合中的元素可以是毫不相干的。元素可以是个体,也可以是一个集合,比如1,2,{1,2}就构成一个集合,集合中有三个元素,两个是个体,一个是集合。元素可以是数对,(x,y)是一个数对,代表二维坐标系中的一个点。如果集合中的元素没有共同的特征

6、,要完整地描述一个集合,我们被迫列出集合中的每一个元素,如{一阵风,一匹马,一头牛};如果存在相同的特征,描述就简单多了,如{所有正整数}、{所有英国男人}、{所有四川的下过马驹的红色的母马},不用一一列举。区间是特殊的集合,专门用来表示某些连续的实数的集合。集合在逻辑中的应用也十分广泛,学好了集合,数学和逻辑都能提高,起到“两个男人并排坐在石头上”的作用。  集合中元素的个数是集合的重要特征。如果两个集合的元素能有一一对应的关系,那么这两个集合元素的个数就是相等的。在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合

7、与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1,2,3,4,5)的元素个数相等,所以我们才说物品共有5个。集合分为有限集合和无限集合,元素的个数一般是针对有限集合说的。对无限集合来说,有很多不同之处。比如{所有的正整数}与{所有的正偶数},后者只是前者的一个子集,但两者存在一一对应的关系,因此元素个数“相等”。而{所有整数}与{所有实数}则不可能建立一一对应的关系,因为它们的无限的级别是不同的。对两个无限集合,我们只强调是否能一一对应,不说元素个数是否相等。  两个集合有交集和并集的关系。交集是同时在两个集合中的所有元素的集

8、合,例如{中国人}交{男人}={中国男人},{韩国俊男}交{韩国美女}={河利秀}。并集是在其

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。