欢迎来到天天文库
浏览记录
ID:29898318
大小:110.56 KB
页数:5页
时间:2018-12-24
《高中数学 用样本的数字特征估计总体的数字特征教案 新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省武邑中学高中数学用样本的数字特征估计总体的数字特征教案新人教A版必修3备课人授课时间课题2.2.2用样本的数字特征估计总体的数字特征课标要求正确理解样本数据标准差的意义和作用,合理地选取样本教学目标知识目标用样本的基本数字特征估计总体的基本数字特征。技能目标形成对数据处理过程进行初步评价的意识。情感态度价值观能够辨证地理解数学知识与现实世界的联系。重点用样本平均数和标准差估计总体的平均数与标准差难点能应用相关知识解决简单的实际问题。教问题与情境及教师活动学生活动学过程及方法【创设情境】在一次射击比赛中,甲、乙两名运动员各射击10
2、次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。——用样本的数字特征估计总体的数字特征(板出课题)。【探究新知】<一>、众数、中位数、平均数〖探究〗:P62(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)〖提问〗
3、:请大家翻回到课本第56页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差。〖提问〗:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数。因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等。由此可以估计出中位数的值为2.
4、02。(图略见课本63页图2.2-6)〖思考〗:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)(课本63页图2.2-6)显示,大部分居民的月均用水量在中部(2.02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的。〖思考〗:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)<二>、标准差、方差1.标准差平均数为我
5、们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断。某地区的统计显示,该地区的中学生的平均身高为176㎝,给我们的印象是该地区的中学生生长发育好,身高较高。但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质。因此,只有平均数难以概括样本数据的实际状态。例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样
6、本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?我们知道,。学生回答1河北武中·宏达教育集团教师课时教案教问题与情境及教师活动学生活动学过程及方法数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差。〖提问〗:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数。因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等。由此可以估计出中位数的值为2.02。(
7、图略见课本63页图2.2-6)〖思考〗:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)(课本63页图2.2-6)显示,大部分居民的月均用水量在中部(2.02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的。〖思考〗:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)<二>、标准差、方差1.标准差平均数为我们提供了
8、样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断。某地区的统计显示,该地区的中学生的平均身高为176㎝,给我们的印象是该地区的中学生生长发育好,身高较高。但是,假如这个平均数是从五十万名中学生抽出的五十
此文档下载收益归作者所有