欢迎来到天天文库
浏览记录
ID:29878170
大小:89.50 KB
页数:8页
时间:2018-12-24
《高等数学课程教学大纲(经管类》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《高等数学》教学大纲(2010年09月修订)海南大学三亚学院二○○七年三月《高等数学》课程教学大纲(Highermathematics)课程编号:课程性质:公共基础课适用专业:经管类本科各专业先修课程:初等数学后续课程:线性代数,概率统计总学分:5教学目的与要求:通过本课程的学习,使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数、常微分方程等基本概念、基本理论、基本方法和运算技能,并受到数学方法和应用这些方法解决经济管理领域中实际问题的初步训练,为掌握专业经济理论和提高专业技能打下必备的、较扎实的数学基础。在课堂教学上应采用启发
2、式教学法,并安排适当数量的习题课,在条件允许的情况下,还可采用多媒体辅助教学。部分专业可根据专业需要,对教学内容作适当调节。使用教材:吴赣昌主编《微积分》、中国人民大学、2009年教学时数及分配表:80学时(周5学时,共16周)学时分配表章序内容学时理论课时实验或实践课时1函数、极限与连续1402导数与微分1203中值定理与导数的应用1004不定积分805定积分及其应用1006多元函数微积分1207无穷级数808微分方程与差分方程60总计80第一章函数、极限与连续(14学时)第一节函数一、实数与区间二、邻域三、函数的概念四、函数特性五、数学建模—
3、—函数关系的建立第二节初等函数一、反函数二、基本初等函数三、复合函数四、初等函数第三节常用经济函数一、单利与复利二、多次付息三、贴现四、需求函数五、供给函数六、需求函数七、成本函数八、收入函数与利润函数第四节数列的极限一、极限概念的引入二、数列的定义三、数列的极限四、收敛数列的有界性五、极限的唯一性六、收敛数列的保号性第五节函数的极限一、自变量趋向无穷大时函数的极限二、自变量趋向有限值时函数的极限三、左、右极限四、函数极限的性质第六节无穷小与无穷大一、无穷小二、无穷小的运算性质三、无穷大四、无穷小与无穷大的关系第七节极限运算法则一、极限四则运算法
4、则二、复合函数的极限运算法则第八节极限存在准则两个重要极限一、夹逼准则二、单调有界准则三、两个重要极限四、连续复利第九节无穷小的比较一、无穷小比较的概念二、等价无穷小第十节函数的连续与间断一、函数的连续二、左连续与右连续三、连续函数与连续区间四、函数的间断点第十一节连续函数的运算性质一、连续函数的算术运算二、复合函数的连续性三、初等函数的连续性四、闭区间上连续函数的性质本章重点:函数的基本特性,复合函数与反函数,初等函数,常用经济函数,极限,极限的性质与运算法则,两个重要极限,函数的连续性难点:复合函数与反函数,极限,两个重要极限,函数连续点、间
5、断点的判定第二章导数与微分(12学时)第一节导数概念一、引例二、导数的定义三、左、右导数四、用定义计算导数五、导数的几何意义六、函数的可导性与连续性的关系第二节函数的求导法则一、导数的四则运算法则二、反函数的导数三、复合函数的求导法则四、初等函数的求导法则第三节导数的应用一、瞬时变化率二、质点的垂直运动模型三、经济学中的导数第四节高阶导数常见函数的高阶导数第五节隐函数的导数一、隐函数的导数二、对数求导法则第六节函数的微分一、微分的定义二、函数可微的条件三、微分的几何意义四、基本初等函数的微分公式与微分运算法则五、函数的线性化六、误差计算本章重点:
6、导数概念、导数的几何意义、求导法则、复合函数的求导法则、微分及导数在经济学中的应用,边际与弹性难点:导数概念、求导法则、微分及复合函数的求导法则第三章中值定理与导数的应用(10学时)第一节中值定理一、罗尔定理二、拉格朗日中值定理三、柯西中值定理第二节洛必达法则一、型与型未定式二、其他形式的未定式﹡第三节泰勒公式第四节函数的单调性、凹凸性与极值一、函数的单调性二、曲线的凹凸性三、函数的极值第五节数学建模——最优化一、函数的最大值与最小值二、﹡对抛射体运动建模三、最优化在经济学中的应用﹡第六节函数图形的描绘一、渐近线二、函数图形的描绘本章重点:中值定
7、理,罗必塔法则,函数单调性判别法、极值与最值,曲线的凸性、拐点与渐近线,函数作图难点:中值定理及其应用,函数极值与最值的求法,函数作图第四章不定积分(8学时)第一节不定积分的概念与性质一、原函数的概念二、不定积分的概念三、不定积分的性质四、基本积分表五、直接积分法第二节换元积分法一、第一类换元法(凑微分法)二、第二类换元法第三节分部积分法﹡第四节有理函数的积分一、有理函数的积分二、简单无理函数的积分本章重点:不定积分的概念与性质,换元积分法与分部积分法难点:计算不定积分第四章定积分及其应用(10学时)第一节定积分概念一、引例二、定积分的定义三、定
8、积分的近似计算第二节定积分的性质第三节微积分基本公式一、引例二、积分上限的函数及其导数三、牛顿—莱布尼茨公式第四节定积分的换元积分法和分
此文档下载收益归作者所有