基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)

基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)

ID:29855301

大小:100.00 KB

页数:9页

时间:2018-12-24

基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)_第1页
基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)_第2页
基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)_第3页
基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)_第4页
基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)_第5页
资源描述:

《基于matlab的蚁群算法解决旅行商问题(附带源程序、仿真)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、WORD格式整理摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。关键词:蚁群算法;旅行商问题;MATLAB;优化一、意义和目标旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。已被

2、广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。二、国内外研究现状仿生学出现于20世纪50年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。20世纪90年代意大

3、利科学家M.DorigoM最早提出了蚁群优化算法——蚂蚁系统(Antsystem,AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。旅行商问题(TSP,TravelingSalesmanProblem)被认为是一个基本问题,是在1859年由威廉·汉密尔顿爵士首次提出的。所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的专业资料值得

4、拥有WORD格式整理NP问题。TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志。如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。三、蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-

5、mone)。当它们碰到一个还没有走过的路口时,就随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。这样形成了一个正反馈。最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。四、基于MATLAB的蚁群算法求解旅行商问题TSP问题描述如下:设有n个城市C=(1,2,...,n),任意两个城市i

6、,j之间的距离为dij,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。主要符号说明Cn个城市的坐标,n×2的矩阵NC_max最大迭代次数m蚂蚁个数Alpha表征信息素重要程度的参数Beta表征启发式因子重要程度的参数Rho信息素蒸发系数Q信息素增加强度系数R_best各代最佳路线专业资料值得拥有WORD格式整理L_best各代最佳路线的长度求解TSP问题的蚂蚁算法中,每只蚂蚁是一个独立的用于构造路线的过程,若干蚂蚁过程之间通过自适应的信息素值来交换信息,合作求解,并不断优化。这里的信息素值分布式存储在图中,与各弧相关联。蚂蚁算法

7、求解TSP问题的过程如下:(1)首先初始化,设迭代的次数为NC。初始化NC=0(2)将m个蚂蚁置于n个顶点上(3)m只蚂蚁按概率函数选择下一座城市,完成各自的周游每个蚂蚁按照状态变化规则逐步地构造一个解,即生成一条回路。蚂蚁的任务是访问所有的城市后返回到起点,生成一条回路。设蚂蚁k当前所在的顶点为i,那么,蚂蚁k由点i向点j移动要遵循规则而不断迁移,按不同概率来选择下一点。(4)记录本次迭代最佳路线(5)全局更新信息素值应用全局信息素更新规则来改变信息素值。当所有m个蚂蚁生成了m个解,其中有一条最短路径是本代最优解,将属于这条路线上的所有弧相关联的信息素值进行更

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。