欢迎来到天天文库
浏览记录
ID:56864511
大小:89.00 KB
页数:7页
时间:2020-07-16
《基于蚁群算法的旅行商问题解决方案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、基于蚁群算法的旅行商问题解决方案一引言旅行商问题(TSP,TravelingSalesmanProblem)是在1859年由威廉·汉密尔顿爵士首次提出的,它是物流领域中的典型问题,这个问题的求解具有十分重要的理论和现实意义。所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志
2、。如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。二蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-mone)。当它们碰到一个还没有走过的路口时
3、,就随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。这样形成了一个正反馈。最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。三基于蚁群算法的旅行商问题求解方案TSP问题描述如下:设有n个城市C=(1,2,...,n),任意两个城市i,j之间
4、的距离为dij,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。主要符号说明Cn个城市的坐标,n×2的矩阵NC_max最大迭代次数m蚂蚁个数Alpha表征信息素重要程度的参数Beta表征启发式因子重要程度的参数Rho信息素蒸发系数Q信息素增加强度系数R_best各代最佳路线L_best各代最佳路线的长度求解TSP问题的蚂蚁算法中,每只蚂蚁是一个独立的用于构造路线的过程,若干蚂蚁过程之间通过自适应的信息素值来交换信息,合作求解,并不断优化。这里的信息素值分布式存储在图中,与各弧相关联。蚂
5、蚁算法求解TSP问题的过程如下:(1)首先初始化,设迭代的次数为NC。初始化NC=0(2)将m个蚂蚁置于n个顶点上(3)m只蚂蚁按概率函数选择下一座城市,完成各自的周游每个蚂蚁按照状态变化规则逐步地构造一个解,即生成一条回路。蚂蚁的任务是访问所有的城市后返回到起点,生成一条回路。设蚂蚁k当前所在的顶点为i,那么,蚂蚁k由点i向点j移动要遵循规则而不断迁移,按不同概率来选择下一点。(4)记录本次迭代最佳路线(5)全局更新信息素值应用全局信息素更新规则来改变信息素值。当所有m个蚂蚁生成了m个解,其中有一条最短路径是本代最优解
6、,将属于这条路线上的所有弧相关联的信息素值进行更新。全局信息素更新的目的是在最短路线上注入额外的信息素,即只有属于最短路线的弧上的信息素才能得到加强,这是一个正反馈的过程,也是一个强化学习的过程。在图中各弧上,伴随着信息素的挥发,全局最短路线上各弧的信息素值得到增加。(6)终止若终止条件满足,则结束;否则NC=NC+1,转入步骤(2)进行下一代进化。终止条件可指定进化的代数,也可限定运行时间,或设定最短路长的下限。(7)输出结果四数据实验及结果通过计算机仿真,得出旅行商问题优化结果和平均距离和最短距离,如图所示:四分析与
7、总结本文设计了一种基于MATLAB实现的蚁群算法,用以求解组合优化难题中的典型代表旅行商问题。对30个城市旅行商问题进行了测试,所得结果能达到优化作用,解决了这个问题。经过对旅行商问题的深入理解,得到了能解决问题的基本数学模型,然后设计算法的基本思想,技术路线,最后编码。在多次调试,修改后,本算法成功运行,并实现了最初的设定目标。另外,MATLAB具有丰富的绘图函数,对于绘图十分方便,这是选择MATLAB解决TSP问题的算法编写、调试的原因。蚁群算法解决旅行商问题MATLAB程序x=[413754257268715483
8、641822839125245871748718138262584541444]';y=[94846762649958446269605460463838426971787640407323521263550]';C=[xy];NC_max=50;m=30;Alpha=1.5;Beta=2;Rho=0.1;Q=10^
此文档下载收益归作者所有