欢迎来到天天文库
浏览记录
ID:29850363
大小:173.01 KB
页数:7页
时间:2018-12-24
《函数的单调性(4)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、“函数的单调性”教学设计河北省邯郸市成安县综合职业技术学校——张绍栋【指导思想与理论依据】建构主义认为,学习者的知识是在一定的情境下,借助他人的帮助,如人与人之间的协作、交流、利用必要的信息等等,通过意义建构而获得的。建构主义数学观认为,教学设计要根据学生原有知识和思维习惯设计数学活动,创设情境,让学生实现意义建构。《职业高中数学(基础模块)课程标准》指出:“高中数学课程应倡导自主探索等学习数学的方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的‘再创造’过程。”要求学生“理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其
2、中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。”【教材分析】 函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.【学情分析】学生在初中学习了一次函数、二次函数、反比例函数的基础上对函数的增减性有一个初步的感性认识,在此学习单调性是对函数概念的延续和拓展,对进一步探索、研究函数的其它性质有着示范性的作
3、用,又是后续研究指数函数、对数函数等内容的基础。单调性起着承上启下的作用,一方面,是初中学习内容的深化,使学生对函数单调性从感性认识提高到理性认识。另一方面,函数的单调性为后面学习指数函数、对数函数、三角函数及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值,导数等都有着紧密的联系。通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。在此学习单调性,有助于学生从感性思维到理性思维的过渡。【教学目标】1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。2.过程与方法:通过观察函数图象
4、的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。【教学重点】 函数单调性的概念形成和初步运用,【教学难点】 根据定义证明函数的单调性。【教学方法】 教师启发讲授,学生探究学习。【教学工具】 教学多媒体。教学流程示意图【教学过程】环节教师活动学生活动设计意图 一、创设情境,引入课题 师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,1,2,
5、3我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。 生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。 师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?二、归纳探索,形成概念 我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的专题研究之一──函数单调性的研究。同学们在初中已经对函数随着自变量取值的变化函数值相应
6、的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。1.借助图象,直观感知首先,我们来研究一次函数和二次函数的单调性。师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,师:根据图象,请同学们写出你对这两个函数单调性的描述。生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。2.抽象思维,形成概念 函数的性质离不开函数的定义域,在研究函数单调性时,我们也必须充分考虑到这一点,在函数的定义区间上描述随着自变量值的变化,函数值的变化情况。 师:思考,如何利用函数解析式来描述函数随着自变量值的变化
7、,函数值的变化情况?(注意函数的定义区间) 生:在上,随着自变量值的增大,函数值逐渐减小;在上,随着自变量值的增大,函数值逐渐增大。师:如果给出函数,你能用准确的数学符号语言表述出函数单调性的定义吗?生:(师生共同探究,得出增函数严格的定义)一般地,设函数的定义域为:①如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;②如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。三、掌握证法,适当延展【例1】下图是定义在区间上的函数,根据图象说出
此文档下载收益归作者所有