资源描述:
《2015秋高中数学 1.2.2函数的表示法(第3课时)学案设计 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章 集合与函数概念1.2 函数及其表示1.2.2 函数的表示法(第三课时)学习目标①了解映射的概念及表示方法;②会利用映射的概念来判断“对应关系”是否是映射;③感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.合作学习 一、设计问题,创设情境前面学习了函数的概念:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一的数和它对应.(1)对于任意一个实数,在数轴上都有唯一的点与之对应.(2)班级里的每一位同学在教室都有唯一的坐位与之对应.(3)对于任意的三角
2、形,都有唯一确定的面积与之对应.那么这些对应又有什么特点呢?二、自主探索,尝试解决问题1:①给出以下对应关系:这三个对应关系有什么共同特点?②像问题①中的对应我们称为映射,请给出映射的定义.③“都有唯一”是什么意思?④函数与映射有什么关系?三、信息交流,揭示规律分组讨论归纳的结论:①②③④四、运用规律,解决问题【例1】下列哪些对应是从集合A到集合B的映射?(1)A={P
3、P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={P
4、P是平面直角坐标系中的点},B={(x,y)
5、x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的
6、坐标对应;(3)A={三角形},B={x
7、x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x
8、x是新华中学的班级},B={x
9、x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.【例2】下列对应是不是从集合A到集合B的映射,为什么?(1)A=R,B={x∈R
10、x≥0},对应法则是“求平方”;(2)A=R,B={x∈R
11、x>0},对应法则是“求平方”;(3)A={x∈R
12、x>0},B=R,对应法则是“求平方根”;(4)A={平面内的圆},B={平面内的矩形},对应法则是“作圆的内接矩形”.【例3】设f:A→B是A到B的一个映射,其中
13、A=B={(x,y)
14、x,y∈R},f:(x,y)→(x-y,x+y),求:(1)A中元素(-1,2)在B中对应的元素;(2)在A中什么元素与B中元素(-1,2)对应?五、变式演练,深化提高1.设映射f:x→-x2+2x是实数集R=M到实数集R=N的映射,若对于实数p∈N,在M中不存在原象,则实数p的取值范围是( ) A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]2.设f,g都是由A到A的映射,其对应法则如下表(从上到下):表1 映射f的对应法则原象1234象3421表2 映
15、射g的对应法则原象1234象4312 则与f[g(1)]相同的是( ) A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)]3.设集合A={a,b,c},集合B=R,以下对应关系中,一定能建立集合A到集合B的映射的是( )A.对集合A中的数开平方B.对集合A中的数取倒数C.对集合A中的数取算术平方根D.对集合A中的数立方六、反思小结,观点提炼请同学们回想一下,本节课我们学了哪些内容?七、作业精选,巩固提高必做:课本P23练习4.选做:已知下列集合A到B的对应,请判断哪些是A到B的映射?并说明理
16、由.(1)A=N,B=Z,对应法则:“取相反数”;(2)A={-1,0,2},B={-1,0,},对应法则:“取倒数”;(3)A={1,2,3,4,5},B=R,对应法则:“求平方根”;(4)A={0,1,2,4},B={0,1,4,9,64},对应法则f:a→b=(a-1)2;(5)A=N*,B={0,1},对应法则:除以2所得的余数.参考答案 三、信息交流,揭示规律①集合A,B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.②一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都
17、有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.记作“f:A→B”.如果集合A中的元素x对应集合B中的元素y,那么集合A中的元素x叫做集合B中的元素y的原象,集合B中的元素y叫做集合A中的元素x的象.③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.④函数是特殊的映射,映射是函数的推广.四、运用规律,解决问题【例1】解:(1)是映射;(2)是映射;(3)是映射;(4)不是映射.新华中学的每个班级对应其班内的多个学生,是一对多,不符合映射的定义.【例2】解:(1)是映射,因为A中的任何
18、一个元素,在B中都能找到唯一的元素与之对应.(2)不是从集合A到集