欢迎来到天天文库
浏览记录
ID:29762532
大小:191.00 KB
页数:7页
时间:2018-12-23
《平面向量数量积》教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2.4平面向量的数量积课题名称2.4.1平面向量数量积的物理背景及含义科目数学年级高一(1)教学时间7.24(一节课)授课者王斌一、教材内容分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的
2、抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。二、教学目标1知识与技能:阐明平面向量的数量积及其几何意义.会算一个向量在另一个上投影的概念,运用平面向量数量积的性质、运算律和几何意义.2过程与方法:以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过作图分析,使学生明确向量的数量积与数的乘法的联系与区别。3情感态度与价值观:由具体的功的概念到向量
3、的数量积,再到共线、垂直时的数量积,使学生学习从特殊到一般,再由一般到特殊的认知规律,体会数形结合思想,类比思想,体验法则学习研究的过程,培养学生学习数学的兴趣及良好的学习习惯。三、学习者特征分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的
4、变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。四、教学重难点重点平面向量数量积的概念.难点平面向量数量积的概念的理解五、教学资源实验(演示)教具计算机、黑板、粉笔教学支持资源制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。六、教学过程阶段安排教学活动教学设计意图创设问题情景,激发学习兴趣问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?问题2:我们是怎么引
5、入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?期望学生回答:物理模型→概念→性质→运算律→应用SFα问题3:如图所示,一物体在力F的作用下产生位移S,(1)力F所做的功W=。(2)请同学们分析这个公式的特点:W(功)是量,F(力)是量,S(位移)是量,α是。问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。问题3
6、的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。探究数量积的概念1、概念的抽象在分析“功”的计算公式的基础上提出问题4问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?2、概念的明晰已知两个非零向量与,它们的夹角为学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我
7、进一步明晰数量积的概念。,我们把数量︱︱·︱︱cos叫做与的数量积(或内积),记作:·,即:·=︱︱·︱︱cos在强调记法和“规定”后,为了让学生进一步认识这一概念,提出问题5问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?3、探究数量积的几何意义如图,我们把││cos(││cos)叫做向量在方向上(在方向上)的投影,记做:OB1=││cos问题6:数量积的几何意义是什么?4、研究数量积的物理意义数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是
此文档下载收益归作者所有